
CRESCENT
SOFTWARE, INC.

QB PLUS
OWNER'S MANUAL

PROFESSIONAL

BASIC PBOGRAMMING TOOLS

CRESCENT
SOFTWARE, INC.

QB Plus
Desk Accessories for the QuickBASIC
Programmer

Version 1.0

Entire contents Copyright" 1989-91 by John H. Eckert and Crescent Software, Inc.

QB Plus was written by John H. Eckert. This manual was written by John H. Eckert, and was
designed and typeset by Jacki W. Pagliaro.

No portion of this software or manual may be duplicated in any manner without the written
permission of Crescent Software, Inc.

CRESCENT SOFTWARE, INC.
32 SEVENTY ACRES
WEST REDDING, CT 06896
(203) 438-5300
Crescent's Support BBS: (203) 426-5958

LICENSE AGREEMENT
Crescent Software, Inc. grants a license to use the enclosed software
and printed documentation to the original purchaser. Copies may be
made for back-up purposes only. Copies made for any other purpose
are expressly prohibited, and adherence to this requirement is the sole
responsibility of the purchaser. Source code and libraries for any
component of the QB Plus program may not be distributed under any
circumstances. This license may be transferred to a third party only if
all existing copies of the software and documentation are also trans
ferred.

WARRANTY INFORMATION
Crescent Software, Inc. warrants that this product will perform as
advertised. In the event that it does not meet the terms of this warranty,
and only in that event, Crescent Software, Inc. will replace the product
or refund the amount paid, if notified within 30 days of purchase. Proof
of purchase must be returned with the product, as well as a brief
description of how it fails to meet the advertised claims.

CRESCENT SOFIWARE'S LIABILITY IS LIMITED TO THE PUR
CHASE PRICE. Under no circumstances shall Crescent Software or the
authors of this product be liable for any incidental or consequential
damages, nor for any damages in excess of the original purchase price.

QB Plus TABLE OF CONTENTS

TABLE OF CONTENTS

Chapter 1: Introduction
Introduction -..................................... 1-1

Description of Built-in Accessories 1 - 1
Memory Viewer 1 - 1
Macro Keystrokes 1 - 1
Extended .EXE Builder 1 - 2
External Debugger Support 1 - 2
Execution Profiler 1 - 2
Switch Programs (Add-ons) 1-3
Required Hardware and Software 1- 3

Installation and Start Up 1-4
Installation .. 1 - 5
Start up .. 1 - 6
QB Plus Command Line Options 1 - 7

Chapter 2: Extended Executable File
Builder

Extended Executable File Builder 2 - 1
The Build .EXE Window 2 - 1
"Starter Set" Default Options 2 - 2
Edit Commands 2 - 3
Format and Syntax 2 - 4
Options List ... 2 - 5
Saving the Build Options 2 - 6
Building the Executable File 2 - 6
QB Plus Drives, Directories and Paths 2 - 7
QB Plus Tips and Traps 2 - 7

Chapter 3: External Debugger
External Debugger 3 - 1

Chapter 4: Macro Keystrokes
Macro Keystrokes .. 4 - 1

Recording Keystrokes 4 - 1

CRESCENTSOFIWARE, INC. ■

TABLE OF CONIENI'S QB Plus

Chapter 4: Macro Keystrokes (Continued)
Keystroke Playback4 - 3
Viewing Recorded Keystrokes4 - 4
Saving Recorded Keystrokes4 - 5
Loading Pre-recorded Keystrokes From Disk4 - 6
Joining One Set of Keystrokes to Another4 - 7

Chapter 5: Program Execution Profiler
Program Execution Profiler 5 - 1

Profiling Set Up 5 - 2
Profiling Analysis 5 - 3

Time Percentages5 - 4
Call Percentages5 - 4
Call Duration 5 - 4
Printing the Analysis 5 - 5
Optimizing .. 5 - 5

Profiler Considerations : 5 - 6
Automating Profile Sampling Runs 5 - 7
Profiling and Macro Keys 5 - 7
Interpreting Changes5 - 7
QB Plus Profiler Overhead 5 - 8
Potential Sampling Errors-Halt/Resume Sequence 5 - 8
Potential Sampling Errors-System Timer

Reprogramming 5 - 9
Sample Rate Harmonics 5 - 9
QuickBASIC History, Watches, and Breakpoints 5 - 10
Cumulative Sampling Runs 5 - 10
QB Environment Versus Executable Programs5 - 10

Profiler Capacity 5 - 12

Chapter 6: Memory Viewer
Memory Viewer .. 6 - 1

Caution and Limitations 6 - 1
Caution: I/0 Ports: 6 - 1
Hardware Limitations 6 - 2

Memory View Screen 6 - 2
Getting Help .. 6 - 3
Getting Around in Memory 6 - 3

■ ii CRESCENT SOFIW ARE, INC

QB Plus TABLE OF CONTENTS

Chapter 6: Memory Viewer (Continued)
Movement Keys 6 - 4
Entering Addresses 6 - 4
Out of Range Ad.dresses 6 - 5

Viewing Modes 6 - 5
Byte ... 6-5
Word .. 6-5
Integer ... 6 - 7
Long .. 6-7
Vector ... 6-8
ASCII ... 6-9
Ports (Caution) 6- 10
CMOS .. 6-10
Real Time ... 6 - 10

Getting Information 6 - 11
Conventional Memory Information 6 - 11
Expanded Memory Information 6 - 11
Extended Memory Information 6 - 12
EMSJXM:S Handle List 6 - 13

Addressing Modes 6 - 13
Conventional Addressing 6 - 13
Linear Addressing 6-14
Expanded Memory Addressing 6 - 15
XMS Memory Addressing 6 - 16

Chapter 7: The Program Switcher and
Add-On Accessories

The Program Switcher and Add-On Accessories 7 - 1
Preserving QB Plus/QB Screen Image 7 - 3

Chapter 8: Change Settings
Change Settings ... 8 - 1

Debugger Settings 8 - 1
Macro Key Customization 8 - 2
Other Settings .. 8 - 3

File Swap Name 8 - 3
On/Off Toggle Switch Box 8 - 3

CRESCENf SOFIW ARE, INC. ■ iii

T.."1!LE OF cor-.--re.-rs QBP!JIII

Chapter 9: Ending The Accessories
Ending the .-\cc.essories 9 - 1

APPE.'+DICES
QB Plus Error Condition Codes A- 1

1facro Key Technical Information A - 2
1fessages .. A. - 3

Problem Conditions A-7

■ LV

QB Plu1 atapter 1: Introduction

Introduction
QB Plus is a collection of software accessories developed especially for
the Quitk:BASIC programmer. QB Plus extends the Quick:BASIC
programming environment by loading with it and remaining two
keystrokes away while editing the Quick:BASIC program in memory.

Provided with QB Plus are accessories to view the contents of memory;
to record and playback keystrokes; to create executable programs using
any of the compiler and linker options; debug them using an external
debugger; and profile the execution of Quick:BASIC programs to iden
tify bottlenecks. Besides these built-in tools, the BASIC programmer
can readily access other programs from within QB Plus.

QB Plus is designed to workwith Quick:BASICversion 4.5; and the Basic
Professional Development System versions 7.0 and 7.1.

Description of Built-in Accessories

Memory Viewer
The QB Plus memory viewer opens a window into the PC to display the
contents of conventional memory, 1/0 Port registers, the CMOS con
figuration area, and if present, expanded and extended memory.
Memory values may be displayed as hex bytes, 16-bit hex words, 32-bit
hex long integers, signed decimal integers, ASCII chhracters, and seg
ment:offset style hex addresses. A real time mode provides a continually
updated display of changing memory values.

In addition, an information window provides conventional memory
locations of interest, as well as information on expanded (EMS) and
extended (XMS) memory drivers, EMS and XMS handles and memory
allocations.

Macro Keystrokes
QB Plus can record and playback a series of keystrokes from a single
key. This lets you assign fr~uently used key combinations such as
DECLARE FUNCTION, and then easily replay them.

CRESCE~ "f SOFl'W.'1IB, NC ■ 1-1

Chapter 1: Introduction QB Plus

Up to 40 keystrokes may be recorded and associated with any single key;
or up to 36 keys can be linked together to provide up to a series of 1440
keystrokes that may be played back from a single key. Keystroke
recording may be invoked only from within the QuickBASIC editor, so
that it does not interfere with a basic program running in the environ
ment. Keystroke playback, however, is fed not only to QuickBASIC to
help automate repetitive program editing tasks, but may also be used to
playback input sequences to a BASIC program running in the environ
ment. Recorded keystrokes may be saved and loaded from disk.

Extended .EXE Builder
QB Plus lets you specify BC compiler and linker options that are not
normally available in the QuickBASIC programming environment.
This permits the creation of smaller, faster stand alone programs that
take advantage of special libraries, stub files and packing and optimizing
features, without having to leave the environment. QB Plus will create
a "starter set" of BC and Link commands tailored to the BASIC program
in memory, let you edit and add to them, and then compile and link from
within QuickBASIC with a single keystroke. It also supports incremen
tal compiling and linking to eliminate unneeded processing of program
modules that have not changed since the last compile and link cycle.

The compile/link setup for a given program is preserved on disk for
reuse each time that particular program is loaded into the QB Plus-en
hanced environment.

Extern~ Debugger Support
QB Plus permits BASIC programmers who have an external debugger
to access it from within the QuickBASIC environment, to extend the
debugging support provided. With a few keystrokes you can go from
editing in the environment, to building a custom executable program to
testing the new executable in CodeView, and back to the editor for
further changes.

Execution Profiler
When enabled, QB Pius's profiler periodically samples a QuickBASIC
program running in the environment to see which SUB or FUNCTION
is executing at that instant. QB Plus tabulates these samples after the
program ends, showing how much of its time the program spent in each
SUB and FUNCTION, the number of times each was called, and the

■ 1-2 CRESCE!\T SOFIW ARE, INC

QB Plus Chapter 1: Introduction

average time each needed to execute. With this information you can
concentrate on those routines that consumed the most time, and know
which optimizations will have the most effect.

Switch Programs (Add-ons)
With QB Plus, you can invoke other applications from within
QuickBASIC, and thus add to QB Pius's built-in collection of acces
sories. QB Plus swaps QuickBASIC and the loaded BASIC source files
and Quick Libraries to disk or extended or expanded memory, which
frees most of conventional memory to run a specified application
program. With QB Plus you can therefore run large programs that
would be too big to run from QuickBASIC's DOS shell.

The TIMER UN.EXE program provided with QB Plus is an example of
an external add-on program designed to complement QB Plus, and can
be invoked through QB Pius's Switch Program feature.

Required Hardware and Software
QB Plus will run on most machines that QuickBASIC does, although
Hercules display adapters, 3270 PC/AT displays and non-conventional
memory in certain computers may not be fully supported. DOS 3.0 or
greater and a hard disk are strongly recommended. Extended or ex
panded memory is recommended but not required.

QB Plus uses about 45K of conventional memory while QuickBASIC is
running. QB Plus may therefore prevent loading or execution of BASIC
programs that require a large amount of memory. Depending on
options selected by the programmer, QB Plus may also use up to 80K
of expanded memory for its overlays. As much as 560K of EMS or
extended memory may also be needed for storing QB.EXE during
execution of external applications.

QB Plus is compatible with most networks and operating system en
vironments that permit an application to execute a child process.

There may be conflicts with system software and device drivers that
operate in protected mode, dynamically relocate blocks of conventional
memory, intercept and reprogram the PC's system timer, or intercept
the keyboard interrupt routines and/or relocate the keyboard input
buffer.

CRESCEJ\Tf SOFIW ARE, INC. ■ 1-3

Chapter 1: Introduction QB Plus

QB Plus will run in the DOS window of OS/2 1.1 and Windows 3.0;
however, viewing memory above one megabyte may be blocked from
QB Plus. Also, QB Pius's use of interrupt 70h and the on-board
real-time clock in the Profiler may be disabled.

Installation and Start Up

Listing of files supplied with QB Plus:

QBP.EXE

QBPBUILD.EXE

TIMER UN.EXE

ALLFREE.KQF

ALUOIN.KQF

QBMAC.KQF

TESTPROEKQF

MVBAS.BAS

MVIBAS.BAS

MVPROFI.BAS

■ 1-4

The main QB Plus executable file.

The external add-on program, called by the QB
Plus Build .EXE editor to compile and link a
QuickBASIC program based on the contents of
a.MQKfile.

The external add-on program that times the
execution duration of another program.

A macro key stroke file with all key strokes
deleted.

A macro key stroke file with all key strokes
deleted, but the keys consecutively joined to
facilitate recording of long macros.

The default macro key file.

Sample macro key file for MVBAS.BAS execu
tion profiling session.

Source code for a BASIC version of a stand
alone memory viewer.

BASIC subroutine support module for
MVBAS.BAS containing conventional, ex
panded, and extended memory information
routines.

BASIC subroutine support module for
MVBAS.BAS containing instructions for a
demonstration execution profiling session.

CRESCENT SOFIW ARE, INC.

QB Plus

PASSUBS.BAS

TIMER UN.BAS

Chapter 1: Introduction

BASIC subroutine support module for
MVBAS.BAS.

BASIC source code for TIMER UN.EXE.

The remaining files hold the Turbo Pascal source code for QB Plus.

Installation
QB Plus contains more than 50 different files occupying nearly 700K of
disk space. All of the files are compressed in the QBPLUS.ZIP and
SOURCE.ZIP files on the accompanying disk. To help you copy these
files correctly onto your hard disk we have included an automated
installation utility.

Installing QB Plus is very easy. Simply log on to Drive A, place the disk
into that drive, and enter INSTALL at the DOS prompt.

On-screen instructions explain how to use INSTALL. It is not necessary
to install the Pascal source code to use QB Plus, and we include it solely
for those people who are interested. Therefore, you can simply unmark
the SOURCE.ZIP file before pressing F3 to begin installation.

Note that F2 lets you see the file names inside each .ZIP file, and
selectively mark or unmark them for installation. This feature lets you
install only certain files if you prefer.

By default, installation is to C:\QB, though you can change that to reflect
any valid drive and directory. If the directory you specify does not exist,
INSTALL will create it. We recommend that you install QB Plus into
the same directory in which QuickBASIC resides. If you also install the
source code, those files should go into a separate directory. This avoids
cluttering up your QuickBASIC directory.

If you are familiar with the PKUNZIP program, you can optionally run
it manually. Entering PKUNZIP with no arguments displays a help
screen that shows all of the option switches it recognizes.

Alternatively, you may place QBP.EXE and QBP.CFG and the other
QB Plus support files in a drive and subdirectory separate from
QB/QBX. When QB Plus is started, it will look first for QB.EXE and
then QBX.EXE in the current directory; if not found it will then search

CRESCENT SOFIW ARE, INC. ■ 1-5

Chapter 1: Introduction QB Plus

the directories listed in the DOS path, and finally search the drive and
subdirectory from which QB Plus was run. You can also specify a
location for QB/QBX as part of the QB Plus command line.

While it is running, QB Plus will follow a similar search process for its
support modules, such as QBPBUILD.EXE. That is, first the current
directory is searched, then the DOS path, then the directory where
QB/QBX is located, and finally QB Plus' own location. QB Plus .KQF
keystroke macro files; however, default to the current directory, unless
you specify a path as part of the file name.

Separate locations for QB Plus and QB/QBX may be useful and sensible
on a network to allow individual QB Plus customization.

PKUNZIP is provided under license from PKWARE, Inc.

Start up
To operate QuickBASIC with QB Plus, simply substitute QBP for QB
or QBX command you now use to start QuickBASIC.

QB Plus will recognize all of the QB or QBX command line arguments.
For example, if you start QB like this:

C>QB /H/L/ AH

then start QB Plus as follows:

C>QBP /H/L/ AH

QB Plus will first load itself, then call QuickBASIC with the command
line arguments given. To show explicitly where QB.EXE or QBXEXE
is located use the QB Plus /Q: switch:

C>QBP /Q:\QBDIR\

Once QuickBASIC has started, the QB Plus pop up window will be
available.

Whenever QuickBASIC is in the program editing mode waiting for
input of text, you can access QB Plus by pressing its hot key combination:
Shift-Control by default. QB Plus will not respond at inappropriate
times, such as when QuickBASIC is expecting a command key, while it
is awaiting input into one of its dialog windows, or while it is executing
or compiling a program.

■ 1-6 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 1: Introduction

QB Plus Command Line Options
In addition to command line options for QuickBASIC, QB Plus will also
accept its own command line arguments. It will not pass these along to
QuickBASIC. The arguments may be in any order, or even intermixed
with QuickBASIC arguments if you wish. All are preceded by a slash
(() character.

OPTION

!?

/DO

/NOCLS

/PV

/NX

/NEO

CRESCEl'IT SOFIW ARE, INC.

MEANING

QB Plus will list the command line options and
then return to DOS.

When specified, QB Plus will swap the memory
image of QB to disk rather than extended or
expanded memory, when an external program
is run in "Switch Program","Debugger" or "Build
.EXE"

When specified, QB Plus will leave its window
on screen when an external program described
above is called. Do not use this option unless
you write a QB Plus add-on that displays text
only within the QB Plus pop up window.

When specified, the memory viewer will read
and display register data from your PC's 1/0
ports. Do not use this option unless you deter
mine that such reading will not be harmful to
your PC.

Prevents QB Plus entering protected mode to
read extended memory directly. This is in case
your PC's hardware, BIOS, or software conflict
with QB Pius's method of protected mode ac
cess causing problems (system hangs, reboots,
general protection faults) in the QB Plus
memory viewer.

When specified, this forces QB Plus to keep its
overlays on disk and not load them into ex
panded memory (EMS). This frees 80K of
EMS, but will slow QB Pius's operation some
what.

■ 1-7

Chapter 1: Introduction

!SS

/KF

/KFkeyfilename

/RTC

/NORTC

/Q:\path\

QB Plus

Sets the QB Plus main menu pop-up key com
bination to Left-Shift + Right-Shift.

Loads the default macro key file,
QBMAC.KQF from the current directory
during start up.

On startup, loads the macro key file specified in
keyfilename. For example, the command
QBP/KFIEST.KQF automatically loads the
key file 1ESTKQE

Tells QB Plus to use the AT CMOS clock for
execution profile sampling. Use this switch if
QB Plus fails to automatically detect the
presence of a real-time clock.

Tells QB Plus not to use the AT CMOS clock if
detected. When this switch is used profile
sample rates are limited to 18 per second. Use
this switch in the event of a conflict between QB
Plus and another program or operating system's
use of the real-time clock or interrupt 70h.

Loads QuickBASIC from the path specified in
\path\. For example, the command QBP
/Q:\QB45\ loads and executes the version of QB
or QBX contained in the "\QB45" subdirectory.
Note the trailing backslash.

Note that these command line options take precedence over settings
stored in file by the QB Plus Change Settings Save command.

■ 1-8 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 2: Extended Executable File Builder

Extended Executable File Builder
Have you ever wanted to compile your QuickBASIC programs from
within QuickBASIC, but needed to use different compile and link
options than the menus provide? Or have you ever wanted to be able
to compile only those modules of a multi-module program that have
changed? Or, have you been frustrated because BASIC PDS does not
let you specify stub files or a special library to help reduce the size of
your programs?

With QB Plus, you can edit and test your programs in the QuickBASIC
editor, yet take advantage of all the compile and link options available
from the command line-without leaving the editor.

QB Pius's Build .EXE window presents the BC and LINK commands
to build an executable file from the QuickBASIC source file presently
in memory. You can add, change, remove options, object files, or
libraries-however you like. One keystroke will then compile and link
your program as you've just specified, without having to leave
QuickBASIC. Another keystroke will save this setup to file for recall
in your next editing session with the same program. A help screen that
lists all the valid BC and LINK arguments is also available.

With this QB Plus feature, you can automatically reduce the size of your
executable by using the /S compiler option, and the /F/PACKC LINK
options. You can also link with stub files to eliminate unused code from
the BASIC PDS runtime library. The QB Plus conditional compilation
feature can also save you time by compiling only those modules which
have changed since the program was last built. You can easily use
libraries that substitute or add to the standard libraries supplied with
QuickBASIC, such as Crescent Software's P.D.Q.

The Build .EXE Window

The Build .EXE window is primarily a line-based text editor, having a
total capacity of 40 lines with 18 visible at one time.

When the Build .EXE window is first selected, QB Plus looks for a
loaded BASIC source file. It then either retrieves a previously saved
set of compile and link options, or constructs a starter set. If QB Plus
cannot find a BASIC program in memory, you will be prompted to load
one.

CRESCENT SOFIW ARE, INC. ■ 2-1

Chapter 2: Extended Executable File Builder QB Plus

Up to 18 loaded QuickBASIC program modules can automatically be
read from QuickBASIC's memory, and converted into a set of compile
and link options for a single executable program. If your program has
more than 18 modules, the extra module names will not be made a part
of the starter set and you will have to enter them in the edit window
manually.

QB Plus displays the BC and LINK options for the source file(s) in the
Build .EXE window for you to edit as desired. The first line or lines
contain the BC invocation you would type on the DOS command line
to compile each component module of the program. Each line begins
with "BC". Note that you may place an apostrophe (') before a BC
command to disable it, or a dollar sign ($) which tells QB Plus to compile
that module only if necessary. Conditional compilation and linking is
discussed later in this manual.

The LINK invocation line appea~ below the BC lines and may also be
preceded by a conditional link flag. Below that are the options to be
passed to LINK: one object file per line, followed by the map file name
and a library file line.

If a set of compile/link options is already present, you will be given the
chance to discard them and start a new set. This should be done when
you change programs if you want to use the Build .EXE window with
the same program you are working with in QuickBASIC. However, this
is not a requirement-once loaded, the Build .EXE options do not have
to match the currently loaded program.

"Starter Set" Default Options
If options saved from a prior session are available, they are automatically
loaded when the Build EXE screen is entered. If QB Plus cannot locate
stored options for this program, it will construct a "starter set" of BC and
LINK options to save you typing time. QB Plus uses a variety of sources:

1. BC file module names

■ 2-2

These come either from a .MAK file, or QuickBASIC's list of
module names in memory. The first module name found in
QuickBASIC's list is assumed to be the main module for locat
ing any .MAK file, for naming the executable file, and for later
saving of your Build options. It will appear in the first BC line.

CRESCENT SOFIW ARE, INC.

QB Plus Chapter 2: &tended Executable File Builder

2. LINK .OBJ file names

These are taken from the module list developed above.

3. LINK .EXE file name

The name of the first module found in QuickBASIC's module
list is placed by QB Plus in the top BC line in the Build window,
and used as the proposed executable file name in the link list.

4. Default options for BC are /0, /S, and rr.
If they had been specified on the command line used to start
QB Plus, / AH and /MBF, as well as any value for /C: other than
512, are added.

S. LINK default options are /EX/SE:512/F/PACKC.

If PDQ.QLB is the loaded QuickLibrary, the LINK options are
/NOE/NOD.

6. The default LINK map file is NUL, which specifies that no
map file is to be created.

7. For QuickBASIC version 4.5, the default library is
BCOM45.LIB.

This is consistent with the default /0 option for BC, specifying
a stand-alone .EXE file. For QBX, it is BCL70EFR.LIB or
BCL 71EFR.LIB as appropriate. Any additional library is based
on the loaded Quick Library originally passed on the QB Plus
invocation command line.

Note to RD Q. users: If the Quicklibrary is PDQ7.QLB, then
BASIC7.LIB is added to the library line in QBX installations.
Also, if PDQSUBS.BAS is loaded, it will also be specified for
compiling and linking. You should remove the latter references
as PDQSUBS.BAS is meant only for use in the environment,
and not to be compiled into the final executable program.

Edit Commands

The options displayed in the Build window may be edited as you see fit.
Position the cursor with the Arrows, Home and End keys.

CRESCENI' SOFIW ARE, INC. ■ 2-3

Chapter 2: Extended &ecutable File Builder QB Plus

The editor is always in Insert mode. The Enter or Insert keys will insert
a full blank line on the cursor line. Del removes the character at the
cursor, while Backspace-Delete removes to the left. Control+ Y
deletes an entire line, which goes into a Paste Buffer, available for
pasting back with Shift+ Insert, similar to the QB editor.

Each line is 72 characters wide (the width of the window), and there are
40 lines total. Once capacity of either has been reached, QB Plus will
refuse to further insert lines or characters until some are deleted.

Esc returns you to QuickBASIC, leaving intact in memory any changes
you have made. Be aware, however, that the edit buffer is shared with
the Profiler sampling buffer, and using the latter will overwrite the
contents of the former. Thus, be sure to save any changes you want to
preserve permanently before profiling or exiting QB/QBX.

Format and Syntax
Any of the file names and options may be fully edited. The only
restrictions have to do with the way QBPBUILD.EXE interprets the
data for issuing compile and link commands. (Of course, since
QBPBUILD.EXE is an external add-on you can customize it, or even
write an entirely different version to support custom QBP compile/link
formats of your own.)

1. All BC lines must appear above the LINK line, must begin with BC,
'BC, or $BC, or the drive/path and BC as in C:\QB\BC, 'C:\QB\BC,
or $C:\QB\BC. Note that you must add a space after BC. The BC
line must end with a semicolon. Each BC invocation must fit
entirely on one line.

2. Like BC, LINK may be specified by name alone or by its full path,
and the line may optionally begin with a single apostrophe or dollar
sign for conditional linking. LINK must have its command line
options follow it on the same line. Do not end the link line with a
semi-colon.

3. Object files must appear next below the LINK line. If there is more
than one object file each must have a plus sign after it, unless it is
the last one in the object file list. Except as the first object file
(which must be the main object module), libraries may be specified
in the object file list if you wish the linker to link individual object
routines from certain specified libraries.

■ 2-4 CRESCENf SOFIW ARE, INC.

QB Plus Chapter 2: Extended Executable File Builder

4. Following the object files is the name of the executable file.

S. The map file specification must appear next below the executable
object file name(s).

6. The last line must contain the name of the stand alone or runtime
library. If more than one library is being specified, separate their
names with spaces all on the same line, or each library name on an
individual line followed by a plus sign similar to multiple object files.
We recommend (and require with PDS 7.0 and 7.1 unless a .DEF
file is being specified) that the last library name be followed with a
semi-colon.

Example:

BC D: \QB\MAIN. BAS/X/W/0/T /C: 128;
BC D: \QB\MODl. BAS/X/W/0/T /C: 128;
BC D: \QB \M002. BAS/X/W/0/T /C: 128;
BC O:\QB\MOD3.BAS/X/W/0/T/C:128;
LINK /EX/F /PACKC
MAIN+
MOD!+
MOD2+
MOD3
0:\QB\MAJN.EXE
NUL
QB.LIB BCOM45.LIB;

Options List

Pressing Fl gives you not only a summary of the edit commands, but
also a handy listing of valid BC and LINK command line arguments.

The versions of BC and LINK supplied with QB version 4.5 may not
support all of the options listed.

Unlike QuickBASIC, QB Plus will not examine your source file for
certain functions that require specific BC arguments. These include
certain ERROR and event trapping statements. If your program code
requires IE!X!WN switches, you must add them yourself. Also, don't
forget the other modules when you want the IE!X!WN support incor
porated. BC may not warn you of such an omission.

CRESCENT SOFIW ARE, INC. ■ 2-5

Chapter 2: Extended Executable File Builder QB Plus

Likewise, ensuring that other options are appropriate and correct is up
to you, such as eliminating the /0 and changing BCOM45.LIB to
BRUN45.LIB for the non-stand-alone .EXE version. QB Pius's pur
pose is to give you complete freedom with compiling and linking, so
you'll have to supply the error checking yourself.

Saving the Build Options

By pressing F2, the Build setup may be saved to file. The name used for
storage is the same as the main module name (the first name in the BC
list), but with the extension .MQK. This file is stored in the same
directory as the main module. The .MQK file is ordinary ASCII text.
(If you decide to edit it with another editor, be sure to respect the 72
column width, 40 line count, or QB Plus may be unable to read it).

Like a .MAK file, you should keep the .MQK file with the source file(s).
Unlike a .MAK file, however, since the .MQK file contains fully
qualified file names, you will have to update it to the new source file
location before Build will work. That is, if you move the source files
listed in the .MQK file to another subdirectory, QB Plus will no longer
be able to locate them for compiling and linking, even if you move the
.MQK file along with them. Be sure to change the drive and directory
information in the .MQK to reflect the new location(s).

Building the Executable File

Press FlO from the QB Plus Build Window to compile your program
and link its modules and libraries together into an executable file in
accordance with the Build setup you have specified.

QB Plus will first save your build options list to file, then swap QB/QBX
and your program to disk XMS or EMS. It then calls the external build
utility program, QBPBUILD.EXE which uses the contents of the
.MQK file, BC, and LINK to build your program.

QBPBUILD.EXE first calls BC, passing it the arguments in each of the
BC Build lines in turn. BC lines beginning with a single quote are
skipped. BC lines with a leading "$" sign cause QBPBUILD.EXE to
check the date of the source file against the date of the executable file,
if one exists, and skip compilation if the executable is subsequent to the
source.

■ 2-6 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 2: Extended Executable File Builder

If no compiler errors are detected, QBPBUILD constructs a temporary
LINK response file in the current directory from the text following the
LINK line. LINK is then called with the Build arguments and the name
of the newly created response file. If compiler errors are detected or
you placed a single quote at the beginning of the Link line, QBPBUILD
skips the link step. The Link step is also skipped when the LINK. line
and all BC lines begin with a "$" sign, and no source files are compiled
because they are all up-to-date with the executable file.

When QBPBUILD finishes it displays the result codes returned by BC
and LINK until you press a key. QB Plus then takes over again
reloading QB and your source file(s) and Quicklibrary, before returning
you to the QB editor.

QB Plus Drives, Directories and Paths

QBPBUILD first uses any path specified as part of the .MQK file for
BC and LINK. This lets you use a specific compiler or linker version if
you wish. If no path is specified, QBPBUILD uses the BC and LINK
programs found in the current directory, or in any subdirectory con
tained in your PAIB environment variable.

QBPBUILD will ignore drives and directories stored in the QB.INI file
through QuickBASIC's Options menu. However, as it is an external
program, QBPBUILD may be enhanced to recognize these as well as
other options you might want to incorporate into the QB Plus .MQK
file.

Except as noted above, what you see in the Build window is essentially
what you get from QBPBUILD's process.

QB Plus Tips and Traps

1. Tip: With a new program, try to load all your modules and save them
using the File-Save-All QB menu option before invoking the Build
.EXE window. This way QB Plus will fill in most of your option lines
for you. Your modules do not need to be full working models to do
this-just a single remark in the file and a name will satisfy QB Plus.

2. Tip: Have you made major changes to your program and already
saved an existing set of QB Plus options, and you don't want to type
in all the new module names?

CRESCENT SOFIW ARE, INC. ■ 2-7

Chapter 2: Extended Executable File Builder QB Plus

From the DOS command line erase the .MQK file. Then, back
in QuickBASIC, pop up QB Plus with all your program modules
loaded, and QB Plus will construct a fresh set of"starter options"
for you.

3. Tip: Use QB Plus if you need to maintain two different executables
from the same source files. QuickBASIC will give you one version
with the standard options, and QB Plus can give you whatever other
version you need. For example:

a) a real-mode and an OS/2 mode via PDS
b) an alternate math version and a co-processor version
c) near and far string versions

4. Trap: Do not use a semicolon on the LINK line. If a semicolon is
present LINK will ignore the response file and not know what to
compile.

5. Tip: You can get around QB Pius's 18-module limit by listing more
than one object name on each line under LINK. This limit applies
only to the number of modules that QB Plus will pull out of the
QB.EXE in-memory module list when preparing your "starter set"
of BC/LINK options. You are free to add more of your own within
the 40 lines and format provided.

6. Trap: Although BC will alert you to missing /XN/W/E switches
needed to compile source files containing associated statements,
you must remember to add these switches to other modules where
you need the /XN/W or /E object code to also be incorporated.

7. Trap: If your loaded Quick Library does not get picked up auto
matically, or if it is wrongly listed in QB Pius's build window, you
may have had a different Quick Library loaded during the session
when you saved these settings. Or, if you incorrectly specify the
library on the command line and are prompted for the correct library
name as QB starts, the corrected name will not be available to QB
Plus when it constructs its options automatically.

8. Tip: Use the single apostrophe as you would in QB to "comment
out" compile or link commands you might not want executed.
Placed at the beginning of a BC or LINK line, the single apostrophe
will prevent QBPBUILD from executing the line.

■ 2-8 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 2: Extended Executable File Builder

9. Trap: Blank lines are ignored by QBPBUILD and you can use them
to set off parts of your options for readability. However, avoid blank
lines below the LINK command, because the position of LINK
options is significant.

10. Tip: Always save your program before building it, because QB Plus
swaps QuickBASIC and your program to XMS, EMS, or disk during
the building process. If for some reason QB Plus is unable to
recover the swapped information, any unsaved changes you made
will be lost. Perhaps more important, this also ensures that the latest
version of your program is the one compiled, since QB Plus com
piles from the file copy, not memory.

11. Trap: QB Plus may not be able to accurately construct a "starter set"
of build options if:

a) You've loaded and unloaded many modules in the current
session of QB before invoking the Build .EXE window.

b) You've specified as the main module, a module that was not
the first module loaded.

12. Trap: If you have several modules in memory and QB Plus has
selected the incorrect module as the main module, you will need to
reload all modules into QB being certain to reload the desired main
module first. Although you can change the names and the order in
which the files appear in the Build window, QB Plus nevertheless
saves these setup options under the name of the file it displays as
the first BC line. If you've made such changes, then from DOS you
should rename the option file to avoid later confusion.

13. Trap: While you can usually stop a BC or LINK invocation with
Control+C or Control+ Break, this will not necessarily cancel the
succeeding BC or LINK invocations which are a part of the Build
sequence.

CRESCENT SOFIW ARE, INC. ■ 2-9

QB Plus Chapter 3: External Debugger

External Debugger
The Debugger option causes QB Plus to swap QuickBASIC out of
conventional memory and into extended or expanded memory or disk,
and then call the program with the name that had been specified in the
Change Settings area as the debugger name. This is CV.EXE by
default-referring to the Codeview debugger.

Any debugger options and the name of the executable program to debug
specified in the Change Settings area are passed as command line
arguments to the debugger. If no debug target executable program was
entered in the Change Settings area, then QB Plus uses the name of the
most recent QuickBASIC program built by QB Pius's Build EXE
procedure.

If the debugger cannot be found in the current directory, or in any
directory in the PA1H = environment list, then an error message will be
given.

If no debug file name or a name of a non-existent file is passed to the
debugger, then the debugger may give a message if a file is not found at
start up. Code View's message is "Program not found."

If you have no debugger, or wish not to use it in this way, the name of
any other executable file may be substituted for the default debugger
name in the Change Settings menu. Then, when the debugger option
is invoked, the substitute program will run, and be passed the command
options and program name as though it were a debugger. This might be
an effective way to invoke an external cross-reference, text printing,
pre-processor, or other utility.

CRESCEITT SOFIW ARE, INC. ■ 3-1

QB Plus Chapter 4: Macro Keystrokes

Macro Keystrokes
The Macro Keystroke feature of QB Plus works with QuickBASIC and
QBX to allow recording and playback of keystrokes within the editing
environment. This extends the normal editing features to permit the
automation of repetitive typing tasks often encountered during pro
gram editing.

The recording and playback is not limited to text only, but can extend
to QuickBASIC menu selection commands, input to a program running
in the QB environment, and to DOS programs shelled to from either
QuickBASIC or a running QuickBASIC source program. It can assist
not only in editing, but in testing and debugging your program within
the environment.

Recording and playback are not supported within QB Plus itself.

QB Plus allows recording of36 sets of up to 40 keystrokes. A keystroke
includes the press and release of the Shift, Control and Alt keys. Mouse
activity is not recognized, recorded or played back.

A set of keystrokes may be joined to any other set, such that following
playback of the first set, the next specified set automatically plays. This
allows up to 1440 (40 times 36) different keystrokes to be recorded and
played from a single key.

Recorded keystrokes may be saved and recalled from file; QB Plus
defaults to an extension of .KQE All such files are saved and loaded
from the current directory, unless a path is specified as part of the file
name itself.

QB Plus is designed around a standard 100% compatible keyboard
buffer located at segment 0040h, offset 001Ah in memory. QB Pius's
macro record and playback feature may not be compatible with other
macro recording and keystroke playback utilities that expand or relocate
the standard keyboard buffer.

Recording Keystrokes

To record a series of keystrokes, bring up the QB Plus window and
choose the M option for the macro keystrokes. Then select the R
option. QB Plus displays a list showing which keys are currently empty,

CRESCENT SOFIW ARE, INC. ■ 4-1

Chapter 4: Macro Keystrokes QB Plus

and which in use. Keys that are joined to one another are denoted by
an arrow pointing from the one key to the next. If you pick one of these,
playback will automatically include any keystrokes recorded in the key
to which your key is joined.

Pick a key into which you wish to record by pressing it. Choose from
keys in the ranges A to Z and O to 9.

Once you press a key, any existing keystrokes are erased, the menu is
cleared from the screen, and record mode is in effect. An "r" appears
on QB's top line, followed by the macro key into which recording is being
made. As each of your keystrokes are recorded, an ASCII repre
sentation of the key code is displayed on QuickBASIC's top line after
the Macro Key. ASCII characters are displayed as is; extended keys
produce an ASCII representation of their scan codes. The Shift, Alt,
and Ctr! keys produce a code both when pressed and released. A special
set of codes-not the actual scan codes-are stored by QB Plus for these
keys.

Slight delays may be embedded in playback by pressing and releasing an
individual control or shift key. This can absorb some playback process
ing time-useful, for example, between the Run command, and gather
ing of input by your BASIC program to give QuickBASIC time to get
your program up and running before feeding keystrokes to it.

When you have room in the Macro for only four remaining keystrokes,
QB Plus sounds an alert after each key press. (If you need more
recording room, see the section on joining macro keys.)

To stop recording, press the End Recording key combination. This is
Shift+Ctrl by default, but you can change it to Left Shift+ Right Shift
in the Change Settings menu. This key combination may be shared with
the QB Plus menu pop-up command, which likewise may be changed in
the Change settings menu or with the /SS command line option.

When the End Recording command is given, QB Plus removes the
recording status information from QuickBASIC's top line. In addition,
if you are in the QuickBASIC editor at this point and the QB Plus
pop-up command and the End Recording are the same, the QB Plus
menu window will appear, and you may then view the recorded
keystrokes.

■ 4-2 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 4: Macro Keystrokes

Avoid ending your recording on the 40th key. The first key of your End
Recording key combination will be saved by QB Plus, and will be the
last key played on playback, leaving your keyboard in a possibly confus
ing shifted or control state, as though the control or shift key is being
held down. This can also occur if you happen to halt a playback
sequence with the Esc key just after a Control/Shift/Alt key down event
was passed to QB.

If, after playing a macro, you find your keyboard responding as though
the shift, control or alternate keys are down, simply press and release
the control, shift or alternate key, as the case may be, to clear the state.

When using QBX, you should record QBX menu commands by holding
down the Alt key and keeping it down while pressing the desired menu
letter choice. Only then should you release the Alt key. Although QBX
will respond during recording to the physical press and release of the
Alt key before the menu letter, it may not work that way on playback.
For example, in opening a program file, record the following: Alt-down,
F, Alt-up, 0, and so forth.

This is not a problem with QB.EXE.

Keystroke Playback

Keystrokes may be played back using one of two methods:

1. Menu method

Select the "P" option from the QB Plus menu, then press the
desired Macro key when the Macro Key list is displayed. Of
course, you must be in the appropriate QuickBASIC editing
context to access the QB Plus menu. Since your keystroke
recording always begins in this context, this is often appropriate
for playback.

2. Double-tap

If you want to save a step or want to begin playback in a different
context than recorded, invoke recording with a double-tap of
the play key. The default play key is Caps Lock. To double-tap,
press it twice in quick succession. When QB Plus recognizes
your double-tap, it displays an "m" on QB's top line, prompting
you for your desired Macro key. Press it and playback begins.

CRESCENT SOFIW ARE, INC. ■ 4-3

Chapter 4: Macro Keystrokes QB Plus

During playback, QB Plus displays a "p", the macro key, and the
keystrokes being played on QuickBASIC's top line. Press Esc to cancel
playback.

Playback differs from recording in one aspect which can sometimes be
crucial: timing. QB Plus can feed keystrokes to the keyboard buffer at
up to 18 per second with no pause in between, except to wait for the
last key to be read. Furthermore, since changes to the Ctrl, Shift, and
Alt keys are not buffered, QB Plus delays slightly on these keystroke
plays to give QuickBASIC and other applications time to read these
changes.

You can take advantage of these built-in delays to insert brief pauses
into a key playback sequence to allow QuickBASIC or other programs
to complete a process. For example, after pressing F5 from
QuickBASIC to run a program,- QB takes some time to start the
program, then flushes the key buffer to pass a clean buffer to the
program. A tap or two of a shift key during recording will, on playback,
stall and provide some throwaway keystrokes during this start up
process. Each press and release of a shift key inserts about 1/3 second
delay.

This is not adequate to span long periods of keyboard inactivity during
which a running program is polling the keyboard for certain key codes.
For example, although you can record the keystrokes beginning within
QuickBASIC to make an .EXE file and then shell to DOS to run it,
playback of the recorded key sequence will fail during execution of BC
and LINK because they exhaust the recorded keystrokes polling for
Control+C and Control+Break. The work-around here is to record
separate macros-one to lead up to the start of such a process, and the
other you invoke after the process ends to pick up from there.

QB Plus can at other times feed keystrokes to QuickBASIC faster than
they can be processed. Also, you might want to slow the playback to
better observe or control the process. Use the D option on the QB Plus
Change Settings menu to adjust the delay time between keystroke
playback.

Viewing Recorded Keystrokes

If playback produces unexpected results, examination of the keystrokes
recorded in a key helps in troubleshooting and developing work
arounds.

■ 4-4 CRESCENT SOFTWARE, INC

QB Plus Chapter 4: Macro Keystrokes

Press V from the QB Plus Macro menu, and then the desired macro key.
The detailed information which then appears shows the number of
keystrokes recorded in that key, and the macro key, if any, to which the
key is joined. Each keystroke is shown in two formats. The upper is the
ASCII representation of the character and scan code for the keystroke.
The lower line is the hex value of each of the two bytes recorded for the
keystroke.

Extended keys, such as the function and cursor control keys, have zero
for the first byte and the extended key code in the second byte. QB Plus
assigns special codes from 248 to 255 for the press and release of the
Shift, Ctr! and Alt keys.

Saving Recorded Keystrokes

Press "S" from the QB Plus Macro window to save to disk keystrokes
that you have recorded in memory. You will be prompted for a file
name. Pressing Enter with no file name cancels the save; otherwise,
enter a valid DOS file name. QB Plus will add the default extension of
.KQF and save your keystrokes accordingly. You may also specify a
drive and subdirectory as part of the file name, to save your keystrokes
outside of the current subdirectory.

Several editing commands are available during entry of the file name:

Esc
Ctr! +A
Ctr! +S
Backspace
Ctr! +D
Ctr! +F
Enter

Clear entry, place cursor at left
Clear entry, place cursor at left
Clear one character to left, move cursor
Clear one character to left, move cursor
Restore character to right, move cursor
Restore all characters, move cursor
Accept entry as shown

If you should leave QuickBASIC after having recorded but not saved
keystrokes, QB Plus will prompt you with a last chance opportunity to
do so.

CRESCENT SOFTWARE, INC. ■ 4-5

Olapter 4: Macro Keystrokes QB Plus

Loading Pre-recorded Keystrokes From
Disk

Load a set of keystrokes previously saved in file with the L option on
the QB Plus Macro menu window. QB Plus supplies a default file
extension of .KQF automatically. Include the drive and directory infor
mation for keystroke files as needed for files not in the current subdirec
tory.

See the Save section above for a list of editing keys available during file
name entry. Press enter on a blank file name entry to cancel loading.

You may also specify a keystroke file as part of the QB Plus command
line on start up. Use the /KF option along with the file name, in addition
to any parameters you wish to pass along to QuickBASIC.

Examples:

QBP/KF

QBP /KFdecorate

Starts QB Plus and QB.EXE or QBX.EXE
using the default key stroke file QBMAC.KQF

Starts QB Plus and QB.EXE or QBX.EXE
using the keystroke file DECORATE.KQF

QBP /L/KFdemo.wwq Starts QB Plus and QB.EXE or QBX.EXE
using the keystroke file DEMO.WWQ and the
default Quick Library QB.QLB or QBX.QLB

If the specified keystroke file cannot be loaded, a message is displayed.
Then QB Plus continues to load and start QB.EXE or QBX.EXE.

The supplied prerecorded keystrokes are compatible with QuickBASIC
4.5 and QBX with the default key mapping. QBX users who employ
the custom key mapping will need to ensure that any prerecorded
keystrokes that are loaded are compatible with the key mapping in use,
otherwise keystroke playback may produce incorrect results.

■ 4-6 CRESCENT SOFIW ARE, INC.

QB Plus

Joining One Set of Keystrokes to
Another

Chapter 4: Macro Keystrokes

You are not limited to playing back just 40 keystrokes at a time. With
the Join feature, you .can specify another macro to be played when the
first macro key finishes play. For example, if you need to record a series
of more than 40 keystrokes for a particular operation, you can record
the first 40 in macro key A, the second 40 in macro key B, the third 40
in C and so forth. Then join A to B, and B to C. Thereafter, whenever
A is called for play, the keystrokes in B and C will automatically play
when A has finished. Similarly, whenever B is called for play, you will
also get C's keystrokes because of the link between B and C.

Such key joins need not be in alphabetical order-you can jump around
as you like. You can also join a key to itself-either directly or through
other intervening macro keys-to create an endlessly repeating loop.
Note that you can interrupt the playback by pressing with Esc.

For example, if you want to indent every tenth line in your file, you could
record 10 repetitions of Down-Arrow, followed by Home and Tab.
Then join the macro key to itself.

You can join the keys together at any time-before or after recording.
You may have several different macro's which can be replayed in
dividually, or in different combinations or sequences depending on the
situation. Join them in one order for one purpose; then remove the
connection and rejoin them in another order for a different purpose.
The different combinations can be preserved in different .KQF files if
you wish.

On the other hand, if you need to record a long series of keystrokes to
be replayed from a single key, it is to your advantage to join the keys
before recording. With your joins in place, begin recording with the first
key in the sequence. When the first key is almost full, it will sound the
usual "key full" warning beeps. Continue typing anyway. When the first
key is full, recording will continue with the second key in the join list.
When that is full, recording will carry into the third key, and so on until
the last key is filled.

During each transition you will hear the "key filled" beeps. The display
on the screen's top line will tell you which key is being filled so that you
will know when you reach the last join key. On that key, the "key filled"

CRESCENT SOFIW ARE, INC. ■ 4-7

Chapter 4: Macro Keystrokes QB Plus

warning beeps will not stop once the key is filled, until you invoke the
End Recording key combination. Any keypresses after the last key is
filled and the End Recording command will not be recorded.

QB Plus is supplied with a key file named ALI.JOIN.KQF, which has
36 empty keys joined consecutively from A to Z to 1 to 9 to 0. You may
load this file, record your long macro, then save it under a different
name.

■ 4-8 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 5: Program Execution Profiler

Program Execution Profiler
Software optimization means using that combination of design, algo
rithms and code which best achieves performance objectives. Program
execution profiling lets you focus the optimization effort where it has
the greatest potential effect. The profiler does not tell you what must
be changed or how. What changes are to be made in the design,
algorithm, or coding mix is ultimately up to you.

The QB Plus profiler works on the premise that the portion of your
program's code where the program spends most of its time is the area
where greatest potential gains in performance are likely to lie. Most
programs spend more than 80% of their time executing less than 20%
of the code. So, rather than waste your time optimizing the startup and
exit routines which get executed only once, you're better off to attend
to the workhorse code somewhere in the middle of the program that is
repeatedly executed.

It may not always be apparent what that workhorse code is from studying
the source listings - particularly in a large and complex program. That
is where the QB Plus profiler comes in.

QB Pius's profiler allows you to time portions of your program while in
the QuickBASIC environment. Although, because of memory con
siderations, it is not nearly as complete as an external profiler, it can
nevertheless give you a very quick and reasonably focused view of where
your Basic program is spending its time.

The profiler in QB Plus is designed to report on the execution of your
program in several different ways.

First, the total running time of your program is reported. This measure
can tell you how much of an overall improvement in your program's
execution speed you achieve through your optimization efforts.

Second, it can report what percentage of the program execution time
was spent in each of its procedures. As the program executes, QB Plus
periodically samples the program's execution location, and stores a code
number relating to the SUB or FUNCTION executing at that instant.
When the program ends, QB Plus tabulates this sample data and displays

CRESCENT SOFIW ARE, INC. ■ 5-1

Chapter S: Program Execution Profiler QB Plus

a set of horizontal bar graphs to show the distribution of program
execution time across the various routines. Those that constitute the
greatest percentage of time thus become the focus of your optimization.

Third, to assist in determining how to optimize, QB Plus accumulates a
count for each SUB and FUNCTION call, and optionally displays
horizontal bar charts reflecting the percentage of calls by procedure.
This can tell you whether the program is spending a high percentage of
time in a routine because of a large relative number of calls to it.

Finally, to determine whether a routine's time percentage is the result
of a time consuming routine, QB Plus reports on the average duration
of each routine's call. This is displayed in a tabular format to the nearest
microsecond.

With these reports, you can conce_ntrate on those routines that use the
greatest percentage of time. As you make changes, you can immediately
profile again within the QB environment to see the effects of the
changes, whether it be in relation to reducing the number of calls to a
given routine, or in improving a routine's execution speed.

Profiling Set Up

First, load the program you wish to profile. Since the QB Plus profiler
collects samples based on procedure calls, the more procedures a
program has, the more detailed the information the profiler reports. A
program that consists of just a main module, or a main module and a
few subprograms will not really tell you where the program time is being
spent. However, you can use QB Plus to time the program's total
execution time for comparative purposes.

In the QB Plus profiler menu, pressing P toggles the Enabling/Disabling
of profiling. Toggle it to Enabled.

Below that, select an appropriate sampling rate with R. If your PC has
an AT-compatible real-time clock, the rates range from about 18 to 2048
per second. The faster the rate, the greater will be the precision of the
resulting reports but the slower your program will execute. The default
rate of 18 gives you a reasonable picture of your program's execution in
the initial stages of optimization. If your PC lacks a CMOS clock, then
the only available sampling rate is 18.

■ 5-2 CRESCEITTSOFIWARE, INC.

QB Plus Chapter 5: Program Execution Profiler

On the right of the window, the sample buffer should be empty. Before
a profiling run is made, you will usually want to press D to discard the
samples from any previous profiling run.

Any samples collected from a prior program, or from the current
program prior to editing, are not valid and should definitely be dis
carded. You should also discard any existing samples when changing the
sampling rate, as a mixture of samples collected at different sampling
rates is invalid. QB Plus does not automatically discard samples, how
ever, in case you want to collect and average samples over several
successive profiling runs of the same program. See the section Cumula
tive Runs for more about this.

Once you are satisfied with the Profiler set up, press Enter and you are
now set for profiling. From this point, whenever your program is
running QB Plus will sample it. Escape from QB Plus, return to QB,
and press the FS key to run your program and collect samples. Allow it
to run for a minute, then end it as you would normally. QB Plus will
stop sampling when your program stops, preserving the samples in the
sample buffer for you to analyze.

Profiling Analysis
Select A from the QB Plus Profiling menu to see an analysis of the
collected sample data. You should do this before making any changes
to the program; otherwise the sample data may be invalidated.

QB Plus will examine the sample data and prepare a frequency distribu
tion of the code numbers that have been recorded for each procedure
that was executing when QB Plus collected a sample. These code
numbers and the percentage each represents are matched with the
names of the procedures in memory, and then displayed on a horizontal
bar chart.

Bar charts are available for both the routines' percentages of the
execution time and the total subroutine calls. All bar graphs are
presented in the order in which the subroutines were executed. The
time percentage chart is displayed first automatically when the Analyze
option is chosen. You can also view the time percentage graph from any
of the other Analyze screens by pressing the T key.

CRESCENT SOFIW ARE, INC. ■ 5-3

Chapter S: Program Execution Profiler QB Plus

Time Percentages
The Time Percentage graph shows the name of the routine, a horizontal
bar with a length equivalent to its percentage of the total execution time,
and the corresponding numerical percentage. Note that the percentage
may or may not add to 100%, and there are routines listed with 0%. This
is due to dropping the fractions of percentages in the display.

In examining the percentages, keep in mind that where subroutines are
nested, QB Plus will identify only the lowest level routine that is
executing at the moment of the sample, and does not identify the
caller(s). Therefore, the percentage applies only to time spent by a
given routine executing at its own level, not at the level of any routines
it may call.

The display can be scrolled up and down to show additional routines if
more than a screen-full have been sampled.

Naturally, those routines with the longest bars are the ones with the
greatest potential for optimization. You can refer to the two following
screens to identify the basis for these routines' time consumption.

Call Percentages
Pressing the C key gives a set of horizontal bar graphs of routine calls.
The graphs represent the percentage of the total calls that each
subroutine's calls represent. Thus, the graphs give you an immediate
indication of which routines were invoked the most heavily. If a routine
that takes the highest percentage of program time also represents a high
percentage of the calls, then the reason it represents a high percentage
of time is likely because it is called frequently.

If a routine that uses a high percentage of time does not represent a
high percentage of the calls, then it likely takes a long time to execute
relative to the other routines.

Call Duration
Press the D key to display the number of calls to each routine, and the
average duration for each call. Those routines which represent a high
percentage of time, and also have a long relative duration, are the
program's speed bottlenecks. The greatest optimization effect on the

■ 5-4 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 5: Program Execution Proftler

overall program in this case is to speed up these routines. The Duration
display can tell you how much speed up has occurred in each routine
from one optimization to the next.

These three displays-time percentage, call percentage, and average
duration-are what permit you to zero in on what the program's bot
tlenecks are and why.

Printing the Analysis
Pressing the P key creates a hard copy print out of the complete
sampling analysis. Before actually printing, QB Plus tells you the num
ber of lines to be printed, and pauses to let you prepare the printer.
Output is sent to the first parallel port, LPTl.

At the top, the printed output contains the name of the program, the
sample rate, total number of samples, total number of calls and the
program's execution time in seconds. Below that are statistics for each
routine covering the time and call percentages, number of calls, and the
average duration of the calls in microseconds.

Optimizing
Once the profile analysis tells you where the bottlenecks are, it is up to
you to deal with them. Ultimately, you'll have to balance it out to see
how far you want to go in optimization.

Your one option, of course, is to do nothing. After trying the executable
version and then considering the effort it might take to speed it up, you
might conclude the program is fast enough. The use of optimizing
compilers, assembler libraries, and such can help improve your odds of
such a happy outcome, but these tools can not make up for inefficient
design.

Ideally, you want to build your program optimally to begin with. It is
best not to wait until the very end of the process to profile and optimize.
It may well tum out that more than just some tweaking and fine tuning
will be needed. Typically, the biggest performance gains come from
significant changes in approach, new algorithms, or changes in the
structure or approach to data.

Profile early in the development process, so that tip-offs to potential
bottlenecks come early when changes are easier to make.

CRESCENT SOFIW ARE, INC. ■ 5-5

Chapter 5: Program Execution Profiler QB Plus

Using QB Plus with QuickBASIC, this implies the heavy use of
FUNCTIONs and SUBs to provide detailed profiling data. That makes
sense for other reasons and is fine in the early stages of development
even though these procedure types can be slower than other alterna
tives. Those routines which ultimately tum out to be time critical can
always be converted to in~line code or GOSUB routines later on.

To speeding up a routine you might look to the obvious and simple
changes that speed up a QuickBASIC program, and apply them in the
time critical areas. This includes using integers, avoiding intensive string
handling, and using substitute assembler routines.

Often, though, you will need an order of magnitude improvement in
speed to produce a noticeable effect on a program's overall perfor
mance. This might call for changes making the program bigger and
more complex for the sake of speed in those critical portions. For
example, you might find yourself writing extensive initialization and
look-up code to precalculate and access time-consuming calculations,
or to convert between types so the inner loops will be working with
integers, or rearranging a program's sequence so that you can work two
separate processes into a joint loop through common data.

Fundamentally, the real value of the profiler is to tell you where the
algorithms themselves are inefficient and worthy of improvement.

Profiler Considerations

During sample collection, you want to reduce as much as possible the
number of variables between sampling runs, to isolate the results of your
changes. That is a good job for the machine. Take advantage of it
whenever you can in the sample collection process.

Optimizing, on the other hand, takes thought, creativity and even
instinct-sometimes considerable amounts of all three. That is where
you come in.

The following information provides further insight into the Profiler's
operation, its interaction with QB, and other considerations that will
help you interpret results and develop an effective optimizing strategy.

■ 5-6 CRESCENT SOFIWARE, INC.

QB Plus Chapter 5: Program Execution Profiler

Automating Profile Sampling Runs
Before getting into serious profiling/optimizing cycles, you should con
sider how you can arrange for the program to replicate its operation and
terminate itself entirely on its own, if it does not do that already. You
may be able to feed keystrokes to it as discussed below. If not, you
should insert loop or control statements into the code where and as
needed to cause it to execute in the same way each time you profile it.
These statements should cause it to end on its own after having executed
the sequence. Once you have completed optimizing a given sequence,
you can change the controls to profile some other sequence you need
to analyze and possibly optimize.

Profiling and Macro Keys
Programs that gather keyboard input can introduce uncertainties into
the profiling process. First, the human response time will vary from one
sample run to the next, making it hard to assess the results of interim
program changes. Second, the delay while the program waits for the
key press could inflate the execution time of the subroutine containing
the keyboard input routine, thereby skewing the results.

Recording the keystrokes needed to respond to keyboard input avoids
these potential problems. Set up the QB Plus macro recorder and run
through the program while recording your keyboard input. Then set up
your profile sampling run and execute your program again, but this time
use the recorded macro to play the keystrokes back to the program. This
way, the keys will be fed to the input routine rapidly and consistently.

Interpreting Changes
The profiling analysis shows the percent of program time spent in each
procedure individually, not cumulatively. A calling routine will not be
credited with the time spent by another routine it has called. Only the
lowest level procedure executing at that time is accounted for during
collection of a execution sample.

The implication here is that if you undertake to consolidate a procedure
with its callers, you will of course eliminate the procedure and all the
time the program spent in it. But you will increase the percentage of
time spent in the callers. You need to determine whether the result is
a net gain, and the percentage change can be misleading.

CRESCEl'IT SOFIWARE, INC. ■ 5-7

Chapter 5: Program Execution Profiler QB Plus

Consider a case where SUBl at 10% calls SUB2 at 40% in a program
that took 49 seconds to execute. You eliminate SUB2, putting it as a
GOSUB within SUBl and run another profile. The new profile shows
SUB 1 at 50% in 45 seconds. SUB 1 's new percentage is exactly the same
as the previous combined percentage for both SUBl and SUB2, thus it
appears there has been no improvement. Yet 4 seconds were saved in
program execution time. If the profile runs were identical, the change
actually saved 8%.

QB Plus Profiler Overhead
To keep track of program status, QB Plus hooks into BASIC code that
executes each line and calls any SUB or FUNCTION of a loaded
program. Also, QB Plus intercepts the PC's timer interrupt to handle
sampling and other QB Plus functions. Together, these add from two
to six percent overhead to BASIC programs running in the environ
ment, an amount which is unnotie;eable unless you are timing program
execution. Naturally, you will want to allow for this when comparing a
program's execution time within QuickBASIC with and without QB
Plus loaded, if you need to do this for some reason.

Relatively speaking, the more statements per line a program has, the
less the QB Plus overhead effect. Thus, in a small program where you
have compressed a substantial number of single statement lines into
multi-statement lines, you should confirm that any resulting speed up is
intrinsic to the program, rather than through the reduction of QB Plus
overhead. You can do that by comparing both the before and after
versions of the program in QuickBASIC without QB Plus loaded.

The greatest profiler overhead, however, exists when profiling is
enabled and sample collection is occurring. At this time, on each SUB
and FUNCTION call and once every sampling interval (18 to 2048 times
per second), QB Plus adds sample information in the sample buffer for
the currently executing routine. This overhead can be considerable,
particularly where a large number of routines exist in program. You
should disable sampling when you want your program to run at the
normal QuickBASIC environment speed.

Potential Sampling Errors-Halt/Resume
Sequence

Although you can halt and resume a program while it is being sampled,
the results could be inaccurate under certain circumstances.

■ 5-8 CRESCENT SOFIW ARE, INC.

QB Plus O,apter 5: Program Execution Profiler

QB Plus starts timing a program when one of its program lines begins
to execute. QB Plus then stops timing when QuickBASIC returns to
the editor environment. Accordingly, program execution time can be
understated when the halt occurs within a multi-statement line or a basic
intrinsic function, and on program resumption there is a passage of time
before the next line is executed. Consider the following program
fragment:

A$ = '"'" : A$ = INPUT$(2)
PRINT '"The contents of A$ is: '";A$

If you were to halt the program while it is executing the input statement,
on resumption none of the program time occurring during the input
statement would be sampled until a key is pressed and the next program
line begins executing. Either allow for this in your timing, or (preferab
ly) avoid breaking into the program during profiling.

Potential Sampling Errors-System Timer
Reprogramming

At a sampling rate of 18 per second, QB Plus depends upon the PC timer
tick-which occurs 18.2 times per second-to know when to interrupt
your program to take samples. BASIC programs, Quick Library
routines and BASIC statements that alter the timer tick rate could throw
QB Pius's profile timings off. Consider using a different sampling rate,
if available, since the real-time clock on which the higher sampling rates
are based is rarely modified by programs, and should therefore be more
reliable.

Sample Rate Harmonics
Any subroutine that is invoked at the same or multiple of the sampling
rate could end up either under- or over-represented in the sampling.
For example, a process occurring exactly in sync with the timer tick will
either never be sampled, or will be the only process sampled.

Similarly, routines called repeatedly at fixed intervals may suffer from
stroboscopic effects of their call frequency combined with the sampling
frequency to distort their actual execution duration. Very short routines
called in a tight regular loop are especially susceptible to his effect.

CRESCENT SOFIW ARE, INC. ■ 5-9

Chapter 5: Program Execution Profiler QB Plus

Particularly on your first profile of a program, try several different
sampling rates and compare them. If you do not have multiple sampling
rates available on your PC, try opening a watch variable in the QB debug
menu, to slow your program down with respect to the fixed sampling
rate. This will help to identify stroboscopic or harmonic effects.

QuickBASIC History, Watches, and
Breakpoints

Since these will affect a program's execution speed, it is usually better
to disable all of them during profiling-except perhaps as noted in the
section about Sample Rate Harmonics. If you do have any of these in
effect, at the minimum be sure not to change any of their settings
between sampling runs you wish to compare.

Cumulative Sampling Runs
Run times and sample proportions naturally vary slightly from one
profiling run to the next, even where no changes have been made to the
program. You may thus wish to average the results of several runs. This
may be done simply by not discarding the samples between successive
profiling runs. The analysis then will cover all the samples from all the
runs. The elapsed time and call counts will reflect the combined time
and calls, so you will have to divide this by the number of runs to get the
averages per run.

QB Environment Versus Executable
Programs

There is a high correlation between profiling results obtained for a
program run in the environment and the same program run as an
executable program from the DOS command line. There are differen
ces, though, about which you should be aware if your ultimate objective
is to optimize the executable program:

1. .EXE programs generally run faster

There are a variety of reasons discussed later for this. Before
undertaking major revisions in your code based on profile
results in the environment, try out the program in its executable
form. Maybe it is fast enough already. At the minimum, set up
some timing tests that you can later use as a benchmark to be
certain that changes made to speed it up in the environment
have the desired effect on its executable version.

■ 5-10 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 5: Program Execution Profiler

You might be able to use recorded QB Plus macros here too, if
need be, to get consistent timings through a user interface. To
do this, you will have to first record the keystrokes while in the
environment-you may need to tip toe around QuickBASIC for
certain keystrokes. Then use the QB Plus TIMERUN.EXE
add-on program to run the executable version of your program.
Run it through QB Plus 's Switch Program feature with the name
of your compiled stand alone .EXE version as the command line
argument. When TIMERUN prompts for a keypress to begin
timing, hit your macro key. TIMER UN will show the execution
time in ticks after your program ends.

2. Added overhead in SUB/FUNCTION calls in the environment

Generally, there is considerably more overhead in procedure
calls in the environment than in an executable version of the
same program. Further overhead is added by QB Pius's profile
sampling. For this reason, eliminating SUB and FUNCTION
calls by replacing these routines with in-line code or GOSUB
routines can significantly speed up a program running in the
environment. It will also speed up the executable, but not by
nearly as much.

Thus, don't be misled by performance gains in the environment
in this regard. Avoid the temptation toward wholesale collaps
ing of your code into one flat main module in the interests of
optimization. The advantages that code and data encapsulation
provided by SUBS and FUNCTIONS have is well worth it for
the 80% of your code that is executed only 20% of the time.

3. Added overhead in Quick Library calls in the environment

Replacing a simple BASIC routine with an equivalent written
in assembly language may often not lead to the level of perfor
mance improvement in the environment you might expect. This
is because the overhead in the call to the routine may represent
a substantial portion of the call time of the routine. The as
sembler substitute may well have a significant effect on the
compiled executable, however, particularly if it replaces a call
to a time-consuming portion of the BASIC runtime library. You
can determine this only by testing the executable.

CRESCENT SOFIW ARE, INC. ■ 5-11

Chapter 5: Program Execution Profiler QB Plus

The best Quick Library replacement for both environment and
executables is an assembly language routine that integrates
several low-level functions into one can, thus reducing the
overhead of multiple cans.

4. In-line code optimization by the BC compiler

The environment has to be able to reconstitute your source
code for display and file storage. The BC compiler, on the other
hand can condense things and does. If the routine which ap
pears to be a bottleneck in the environment can be condensed
down to in-line code by the compiler, the routine might not be
a bottleneck for the executable.

Consider this somewhat over-simplified example:

A = A * 2 + 8 + 10

The compiler can boil this down to a few assembly lines, because
it consolidates 8 + 10 into 18. However, the environment win
require dozens of instructions to process this, because it cannot
combine steps. Gains you make optimizing this statement in the
environment win not necessarily pay off to the same extent in
the executable.

Profiler Capacity

The samples conected by the profiler are all stored in main memory,
which imposes certain limits on the number of samples which can be
collected.

Total Procedures
Total Calls
Maximum calls per routine
Total Time Samples
Maximum samples per routine

Number

280
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647

Approximate
Duration

30 hrs. minimum
30 hrs. minimum

291 hrs. minimum
291 hrs. minimum

If the number of routines executed by a program during sampling
exceeds the total capacity, sample data win not be conected for the
excess calls, the graphic displays win show a warning message, and the
results may be unreliable. In this event, you should reduce either the
overan sampling duration or the scope of the program sampled. This

■ 5-12 CRESCENf SOFIW ARE, INC.

QB Plus Chapter 5: Program Execution Profiler

can be accomplished by inserting control statements into your program
to cause it to bypass portions. You could also simply terminate the
program short of the routine sampling limit.

CRESCENT SOFIW ARE, INC. ■ 5-13

QB Plus Chapter 6: Memory Viewer

Memory Viewer
QB Pius's Memory Viewer allows the QuickBASIC programmer to
inspect the contents of almost any memory location. As such, it repre
sents an extension to the built-in QuickBASIC Immediate and Watch
windows allowing you to examine data at its most fundamental level.

QB Plus provides the following features:

• Display of memory by byte, by word (unsigned integer), by signed
decimal integer, by long integer, by vectors (far pointers), and by
ASCII characters.

• Access to your PC's hardware I/O ports, and to the CMOS
machine configuration area.

• Expanded memory support for machines with expanded memory
ana a LIM EMS 4.0 or higher Expanded Memory Device Driver.

• Extended memory support, via protected linear addressed mode,
for PC's equipped with extended memory.

• Additional extended memory access via the XMS 2.0 or higher
specification if a conforming XMS device driver is installed.

• A "Real time" mode provides continual on-screen updating of
memory contents giving a dynamic display of changmg memory
values.

Caution and Limitations

Caution: 1/0 Ports:
QB Plus lets you view the contents of both memory addresses and I/O
ports. Unlike memory which is merely a data storage area, some I/O
ports actually control electrical switches that are turned off or on when
accessed-usually by the CPU outputting a particular value to the port.
In rare cases, depending upon the electrical design, a port's hardware
switch can be thrown when reading the value at that port.

In Port View mode, QB Plus reads from the port in order to display the
value on screen. While this is not a problem for most IBM and com
patible PCs with the standard peripherals, there is a remote possibility
for a problem where a PC or peripheral card responds to a port read as

CRESCEITT SOFIW ARE, INC. ■ 6-1

Chapter 6: Memory Viewer QB Plus

well as write. Since ports control important PC components - includ
ing video, keyboard, timer chips, DMA lines, floppy and fixed disk
drives-you should confirm that port reads will not be harmful to your
system before invoking the Port View mode of QB Plus.

By default Port View is disabled. You must start QB Plus with the (PV
command line option, or enable it in the Change Settings area, in order
to display 1/0 port information.

Hardware Limitations
The primary purpose of the QB Plus memory viewer is to display the
contents of addressable memory. Addressable memory is one megabyte
for 8088 CPUs, 16 megabytes for 80286s, and four gigabytes for 80386
and 80486 PCs. QB Plus Version can display addressable memory up
to 16 megabytes. Memory on peripheral adapter cards (other than EMS
memory), on support chips, or even within the CPU itself, cannot be
viewed if it does not appear to the CPU to be within the conventional
address space.

Although QB Plus will work on most IBM and compatible machines,
the fact that it performs a number of its tasks in direct interaction with
the hardware means that some functions may not work properly or at
all on some clones or with certain hardware and software combinations.
If you are not getting the results you expect, first refer to the features
descriptions which follow or the supplied README.DOC file, for
more information about specific known incompatibilities. If that does
not resolve it, please report the problem to Crescent Software.

Memory View Screen

The Memory View screen is first presented whenever the V option is
chosen from the QB Plus main pop up window. This is the primary
memory examining screen.

On the left side is a list of memory addresses in hexadecimal notation.
To the right, and separated from the addresses by a double vertical bar,
are the memory contents, also in hex. In the Byte viewing mode (to
which QB Plus defaults the first time it is popped up), the ASCII
representation of the memory contents is additionally displayed along
the right side of the pop up window.

■ 6-2 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 6: Memory Viewer

The address section of each line represents the starting memory address
for the memory values appearing to the right on that line. The default
is the standard segment:offset addressing style with which conventional
memory below the one megabyte limit is addressed by the CPU in real
mode.

To afford access to memory above the one megabyte conventional limit,
QB Plus provides an additional address component: Huge. The Huge
value is a multiple of one megabyte. A Huge value of zero refers to
conventional memory, and unless your computer is equipped with
extended memory this value is always zero. Refer to the section that
discusses linear extended memory access for more details about how QB
Plus handles Huge segment:offset addressing.

Below the 18 address and memory content screen lines is the display
status line showing the current address and viewing mode. This line is
also used to input specific address values you want to view.

QB Plus defaults to Real Time display of memory. This means that the
screen is continuously updated, to reflect changes to the memory being
displayed.

Getting Help

The lower border of the QB Plus pop up window contains a prompt line
that shows the available commands. If you press Fl QB Plus displays a
screen containing more extensive help information.

Getting Around in Memory

While viewing memory contents, you can move from one address to
another either by specifying the starting address in hex, or by using
address pointer movement keys.

In either case, the starting address is the determining factor for the
display. All screen displays begin with the starting address on the first
line. The default is a multiple of 16 bytes, ie 0000h, 0010h, 0020h, etc.
You may specify a start point which is not on a 16-byte multiple using
the O (Offset) command. The 16-byte multiple, however, will be res
tored when the segment boundary is reached.

CRESCEl'IT SOFIW ARE, INC. ■ 6-3

Chapter 6: Memory Viewer QB Plus

Each successive line moves upward in memory by 48 bytes in ASCII
mode and by 16 bytes in all others. When the end of a segment is
reached, addresses are rolled over to the next higher segment, or
wrapped around to the beginning segment, depending on the address
mode and type of memory being addressed.

A starting address always consists of three components: Huge, Segment,
and Offset. Each must be specified separately either by entering the
individual value, or with the movement key for that component. While
the offset component will always refer to an individual one-byte address,
the segment and Huge components take on different meanings depend
ing upon the address mode in effect-linear, EMS, or XMS. If your PC
is equipped only with conventional memory, the huge component will
always be zero. See the respective portion of the Address Mode section
for details on segments, segment equivalents, Huge, and handle values
as they apply to each mode.

Movement Keys
The left and right arrows move the starting address one line at a time,
while the up and down arrows move a screen at a time. Pg Up and PgDn
decrease or increase the address one segment size, or its equivalent, at
a time. The < and > keys move the huge component one increment
back or ahead.

The Home key jumps to the first offset in a segment or equivalent, while
the End key jumps to the last.

Entering Addresses
Press the O key to input a specific offset address in hexadecimal
notation. The input values must be between O and FFFFh.

Similarly, S prompts you for a segment or equivalent value (meaning
page, when viewing EMS). Pressing H prompts for a Huge or Handle
value. If you have no extended or expanded memory, the huge value is
meaningless, and pressing the H key has no effect.

If you change your mind about entering a value, press Enter on an empty
input line to cancel. The backspace and arrow keys may be used for
editing.

■ 6-4 CRESCENTSOFIWARE,INC

QB Plus Chapter 6: Memory Viewer

Out of Range Addresses
If the values you use produce an address that does not have memory
associated with it, you may see a series of FFh values on the line for that
address. Some PC's will produce random values and the Real Time
mode may exhibit a display of constantly changing values.

In XMS or EMS mode, addresses out of the range allocated to a handle
will produce blank lines.

Viewing Modes

Byte
In Byte mode, memory is displayed one byte at a time. That is, on each
line following the address are sixteen hex values representing the 16
bytes beginning at that line's address. The bytes are displayed in the
same order they occur in memory.

Since each hex byte consists of two characters, you can determine the
memory address of a given byte by counting every other character
beginning from the left. In the example below, the left-most byte, 8, is
at address 0000:0300. The next byte to the right, &H84, is at 0000:0301;
byte value &H4E is at 0000:0302.

To simplify counting, the first eight bytes are separated from the second
eight bytes by a space. Thus, the first byte to the right of the empty
display column in the middle is always eight bytes beyond the starting
address for the line. In this example line, the value at address 0000:0308
is &H31:

0000: 0300 08844E59393E3315 31232425262F2F2F . aNY93 .1#$%&/ / /

In byte mode, the ASCII characters for each byte are displayed at the
right. Non-displayable control characters (ASCII values less than 32)
are represented by periods.

Word
In Word mode, memory contents are treated as a series of words. A
word is the same as a 16-bit integer: two consecutive bytes.

CRESCENT SOFIW ARE, INC. ■ 6-5

Chapter 6: Memory Viewer QB Plus

On each line, QB Plus displays consecutive words beginning at that line's
memory address. Each two-byte word is separated by a space from its
neighbor. To determine a given word's memory address, regard the left
most word as zero, then count each word to the right until you reach the
word you are interested in. Multiply its count by two and add the result
to the line's beginning address.

In the example below, the word value at address 0000:0306 is &H1533.

0000:0300 8408 594E 3E39 1533 2331 2524 2F26 2F2F

Be careful not to apply this technique to the byte components of the
words, however. For example, while &H1533 is at address 0000:0306,
this word's first byte, 15h is not at 0000:0306 as you might expect. In
reality, it's the lower byte of the word that appears first in memory
&H33 in this case. In other words, the lower byte is always at the lower
address.

If you want to locate the address of an individual byte, you are better
off using the byte mode formatted display. Compare the two examples
below - the first in byte mode; the second in word - and notice the
reversal of adjacent byte pairs.

Byte:

0000: 0300 08844E59393E3315 31232425262F2F2F .ANY93 .1#$%&/ / /

Word:

0000: 0300 8408 594E 3E39 1533 2331 2524 2F26 2F2F

Since each display line defaults to a 16-byte multiple, each word dis
played by QB Plus begins on an even numbered byte. Words, however,
do not have to do this. A word can start at an odd byte address, but
when it does it forces extra processing for the CPU. It is thus ad
vantageous to have words aligned on even addresses. QB Plus defaults
to that assumption.

If you wish to view a word or words that begin on an odd byte address,
use to O command to enter that address. All the words on the display
will now be based on low order bytes beginning at odd addresses, and
naturally their values will change.

■ 6-6 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 6: Memo,y Viewer

Note that the odd, non-16-byte multiple, used as the line starting address
remains in effect only when the screen display does not cross a segment
boundary. This is because the CPU cannot create a word from bytes in
two separate segments, but instead wraps the offset value to zero. Thus,
when the boundary is crossed, QB Plus adjusts it to even bytes by adding
or subtracting one byte, and the line containing the boundary crossing
has invalid or missing data from that point to the end of the line.

Integer
BASIC does not have a built-in variable type of Word. BASIC's closest
equivalent is the Integer-a 16-bit signed value as opposed to the 16-bit
unsigned Word. Basic treats the highest bit as a sign bit. If the bit is set,
the value is negative, otherwise it is positive. Therefore, the smallest
integer is 8000h (-32768) and the largest is 7FFFh (+ 32767). Any value
that has a most significant digit of 8 or more is considered negative by
BASIC.

A hexadecimal display of type Integer therefore looks identical to a
hexadecimal display of type Word. QB Plus provides the Integer values
in signed decimal. Note the two lines below that show the memory
values in Word and Integer formats as used by QB Plus.

Word:

0000: 0300 8408 594E 3E39 1533 2331 2524 2F26 2F2F

Integer:

0000:0300 -31736 22868 15929 5427 9009 9508 12070 12079

Address and segment boundary considerations for Integers are under
standably the same as for Words.

Long
Longs are 32-bit integers, or double-words. They are stored in memory
with low-order word first, then the high-order word. Each word is
displayed in a reversed order fashion as well, low-order byte leading the
high-order byte.

QB Plus automatically reverses the memory storage order for the Long
display, so that you are presented with a 32-bit long integer with the bits
in descending order from the left.

CRESCENT SOFIW ARE, INC. ■ 6-7

Chapter 6: Memory Viewer QB Plus

Determining a given long integer's address is similar to determining a
word's address. Starting from the left with the first value as O, count
right to your long integer, multiply by four, and add the result to the
address at the beginning of the line.

In the example of the Long format below, the long integer
&H15333E39 is at address 0000:0304.

Because of the storage order reversal of the bytes and words, be careful
not to assign memory addresses of the component parts of a long integer
in the order they appear on the display. It is wise to switch to the
appropriate byte or word mode format if you need to determine the
address of a specific byte or word. Compare the examples below:

Byte:

0000: 0300 08844E59393E3315 31232425262F2F2F .ANY93 .1#$%&///

Word:

0000: 0300 8408 594E 3E39 1533 2331 2524 2F26 2F2F

Long:

0000:0300 594E8408 15333E39 25242331 2F2F2F26

Note that for purposes of this display mode, QB Plus assumes the long
integers all line up next to one another on a 16 byte address multiple.
In reality, this may or may not be the way the values in this range of
memory are actually accessed by programs. For example, BASIC can
and does store long integers starting at any even-numbered address.
Use the Offset value entry to specify a starting line address other than
the 16-byte multiple. See the discussion in the Word viewing mode
earlier for more on odd-byte addressing, and reversion to even address
ing at segment boundaries.

Vector
The addresses of memory addresses may themselves be stored in
memory. In Vector mode, QB Plus displays these address references as
segment and offsets joined by a colon(:). Each segment:offset com
bination is separated by a space from its neighbor on the display.

■ 6-8 CRESCENT SOFTWARE, INC.

QB Plus Chapter 6: Memo,y Viewer

Addresses of addresses may variously be referred to as pointers or
vectors. Pointers which are 16-bits wide are known as near pointers,
and they represent the offset portion of a given address. Near pointers
refer to a memory location with a 64K segment whose value is assumed.

Far pointers are 32-bit addresses that contain both the segment and
offset values, enabling address specification anywhere in a one
megabyte range. In the first lK of the PC's address space are 256 such
pointers, known collectively as the Interrupt Vector Table. Each 32-bit
segment:offset vector points to the beginning of an interrupt service
routine elsewhere in memory.

QB Plus permits display of memory addresses as though they were a
series of such vectors, aligned on a 16-byte address multiple, just like
the Interrupt Vector Table. This may or may not be how this memory
is actually treated by the programs which access it. Use the Offset input
command to specify a different starting address appropriate to the
vectors you wish to display. See the discussion in the Word addressing
section for cautions on values that cross segment boundaries.

Note that, like the long integers described above, the actual byte
components of the segment:offset addresses are not physically in
memory in the same order they appear on the display. The low-order,
offset portion of the vector precedes the segment portion. Within
segment and offset values, the low bytes lead the high bytes. The byte,
word and vector examples below illustrate this in context.

Byte:

0000: 0300 08844E59393E3315 31232425262F2F2F .ANY93 .1#$%&///

Word:

0000:0300 8408 594E 3E39 1533 2331 2524 2F26 2F2F

Vector:

0000: 0300 594E: 8408 1533: 3E39 2524: 2331 2F2F: 2F26

ASCII
ASCII display mode presents memory contents as though it were ordi
nary text, 48 characters to the line. A dot (.) substitutes for control
characters-characters with ASCII values below 20h.

CRESCENT SOFIW ARE, INC. ■ 6-9

Chapter 6: Memmy Viewer QB Plus

Ports (Caution)
I/O ports are a type of memory that can store and provide information
passed from the peripherals connected to the ports. QB Plus permits
display of data from up to 65536 port addresses, although standard PC's
are equipped with only 16384 possible port addressees. The port data
as displayed by QB Plus thus repeats at 16K intervals.

CMOS
QB Plus shows the CMOS hardware configuration area for PC's so
equipped-typically those compatible with the IBM PC-AT and later.
100% IBM compatible machines allow reading the CMOS area by first
writing the value of the CMOS register to be accessed to port &H70.
That register is then made available by the CMOS circuitry at port
address &H71. Although the standard PC has only a total of 64 CMOS
registers, QB Plus displays 65536 CMOS addresses with the data repeat
ing at 64 byte intervals.

QB Plus does not detect if your machine has no CMOS, or that the
CMOS is incompatible. In CMOS mode, QB Plus will simply and
repeatedly write to port &H70 and read from &H71, displaying the
results which, if there is no CMOS, are unpredictable.

Real Time
Real time means that the screen is continuously updated with changes
to the memory being displayed as they occur. For a demonstration of
this feature, look at the memory addresses beginning at segment 0000
and offset 0400. You will be able to see the timer count changing in
response to your computer's clock ticks, and the changes to the key
board buffer and keyboard flags in response to your key presses.

This real time feature is useful in watching what is happening with other
types of interrupt service routines (like the timer tick or keyboard
handler that leave memory changes in their wake), or the activity or
status at a serial or parallel port.

Using the Real time mode adds delays to the keyboard response, and
you can disable it to speed up scrolling through memory using the R key.

■ 6-10 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 6: Memory Viewer

Getting Information

Toe F3 key provides general information on conventional, and ex
panded and extended memory.

Conventional Memo·ry Information
On the first line is your PC's total installed conventional DOS memory.
The is the figure reported by the Get Memory Size function of your
computer's BIOS (Interrupt 12h). This figure may not entirely reflect
the actual conventional memory used by DOS, if for example, your PC
has memory above the 640K range managed by certain types of memory
device drivers.

Conventional memory locations used by QB Plus are also listed in this
panel. The QB Pius's screen save area contains the underlying
QuickBASIC screen. The View Buffer is used by QB Plus to swap
expanded or extended memory into conventional memory for display
purposes. Below the Screen save area is QB Pius's stack. Examining
these areas of memory may produce confusing results as the memory
may change in the process of viewing it, or may appear to duplicate
memory elsewhere.

Below that are memory addresses associated with QuickBASIC. The
data segment is where QB stores your near variables-the default
segment set with DEF SEG.

Expanded Memory Information
If you have expanded memory and an expanded memory device driver
that conforms to the LIM EMS 4.0 specification, information about the
driver and the memory it manages will appear. Information provided
includes the driver's version number, the segment address of the page
frame, the size of EMS pages-both standard and raw-and the total
number of EMS handles along with the number in use. Available and
allocated EMS memory is also shown. See the expanded memory
portion of the addressing mode section for further details on expanded
memory.

On a subsequent page which is called by pressing the H key, you may
obtain a list of the existing EMS handles and amount of memory
currently allocated to each. The handle number is given in hexadecimal,
while the memory size is in decimal Kilobytes. If you have an XMS

CRESCEIVI' SOFJW ARE, INC. ■ 6-11

Chapter 6: Memory Viewer QB Plus

device driver concurrently installed, both EMS and XMS handles will
be shown. In that case, each EMS handle will be identified with a small
e and the XMS handles with a small x.

Extended Memory Information
If you have extended memory, the amount of installed extended
memory, taken from your PC's CMOS configuration area, will be
shown, followed by the available extended memory figure reported by
your PC's BIOS Get Extended Memory Size function (Interrupt 15h,
function 87h).

These two figures may differ where a program or device driver has
allocated extended memory for itself. In order to protect the memory
it has taken, usually from the end of the installed extended memory, the
program or device driver will capture the 15h interrupt and report a
value which has had its share of extended memory deducted. Thus the
CMOS memory size may be greater than the size reported by interrupt
15h.

Accurate reporting of these figures depends highly on machine register
and BIOS compatibility with the IBM PC-AT. If QB Pius's total ex
tended memory figure is wrong, your machine's CMOS is structured
differently or in a different location than QB Plus expects. On some
PC's, this figure may reflect only the extended memory contained on
the system board or memory card, and not the additional memory
contained on an add-on peripheral card installed in one of the standard
slots. This alone should not prevent QB Plus from successfully display
ing extended memory information, however, since QB Plus does not
rely on this value.

On the other hand, if you know for certain that the "amount available"
figure reported by QB Plus is wrong-it's far larger than the amount of
extended memory you have, for example-then there is some incom
patibility in the BIOS. In this situation, until you can confirm the
accuracy, you should regard as questionable any extended memory data
displayed by QB Plus that is not obtained via an XMS driver. See the
XMS section of Address Modes for more about XMS.

If you have an XMS driver installed that conforms to at least the XMS
2.0 specification, information on the memory managed by the XMS
driver, the number of handles available, and the specification level and
internal version level of the XMS driver are shown.

■ 6-12 CRESCENTSOFIWARE,INC

QB Plus Chapter 6: Memory Viewer

EMS/XMS Handle List
On a subsequent page, a list of handles is provided. At the <Handles>
< OK> prompt press Enter or Esc to skip the handle listing and return
to the memory view screen, or press H to see the handle list. ·

The handle number is shown in hexadecimal, while the memory allo
cated to it is in decimal Kilobytes. If you have an EMS device driver
concurrently active, its handle list will appear first, with each EMS
handle identified with a small e following the handle number. XMS
handles are distinguished by an x. There may be a slight delay when
displaying XMS handles, while QB Plus interrogates the XMS driver on
the validity of each of the 65536 possible handle numbers.

Not all of extended memory is allocated by handle, however. In the
XMS memory standard, handles are assigned to memory blocks allo
cated from extended memory above the first 64k. Such memory can be
accessed only in protected mode.

The first 64K of extended memory, referred to as the High Memory
Area or HMA, can also be accessed in real mode and used by a program
just like it would use conventional memory. If this memory area has
been allocated to an application, it will be reported as being in use.
Otherwise the HMA size in Kilobytes (usually 64K), is shown.

Addressing Modes

Conventional Addressing
The conventional address mode is the default. On machines without
expanded or extended memory, this is the only available address mode.

The addresses are given in three-parts: Huge, Segment and Offset. The
Huge component has no meaning on computers without extended
memory, and will always have a value of zero. Otherwise, the Huge
value represents a one megabyte block, with zero as the block beginning
at address zero, one as the block beginning at one megabyte, and so
forth.

Segment, of course, refers to the traditional overlapping 64k blocks
spaced 16 bytes apart-in this case within the one megabyte block
denoted by the Huge value. The offset is the byte count from the start
of the segment.

CRESCENI' SOFTWARE, INC. ■ 6-13

Chapter 6: Memory Viewer QB Plus

Addresses are accessible from segment 0000h, offset 0000h to segment
FOOOh, offset FFFFh, or any equivalent. Scrolling the display beyond
the one megabyte range will wrap the addressing back around to zero.
However, in ASCII mode, or if offsets are not on a 16-byte address
multiple, the values on a line after the one megabyte boundary is crossed
are taken from a zero offset within the segment. This emulates the way
the CPU would handle the wrap around to zero of the offset value given
a fixed segment value.

The arrow keys primarily affect the offset component of the memory
address. Use the left and right arrow keys to scroll forward or back
through memory one screen line at a time. In the Byte, Word, Long,
and Vector modes, one line encompasses 16 bytes, while ASCII is 48
bytes. The up and down arrow keys move you one screen full of memory
data at a time.

The Home key takes you to the first offset address within the starting
segment displayed on the top line. The End key positions the starting
display address of the first line such that the last line of the display shows
the last bytes in the segment.

With the PgUp and PgDn keys, memory addresses are reduced or
increased one segment size at a time.

When used with a PC equipped with extended memory, the Jess-than
(<) and greater-than (>) keys move forward or back one Huge value
representing one megabyte-at a time. For Huge values greater than
zero, your PC must support extended memory moves using the BIOS
interrupt 15h, function 87h. If your PC has extended memory installed
but hangs up or otherwise acts erratically when the QB Plus memory
viewer is invoked, or when a huge value greater than O is requested, you
may need to disable QB Pius's direct access to extended memory.
Specify the "/NX" option to QB Plus at start up.

Press the "H", "S", or "O" keys to enter a specific Huge, Segment or
Offset value in hex.

Linear Addressing
For computers that are equipped with extended memory, all displayed
values are first moved via protected mode to a display buffer in conven
tional memory. The semicolon(;) key permits you to toggle between

■ 6-14 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 6: Memory Viewer

the segmented addressing scheme described above under conventional
mode, and a linear address scheme that treats all of your PC's memory
up to 16 megabytes as one giant block.

The linear address shown is the single 24-bit value that is used in
protected mode to retrieve the values you see. The Huge/segment:of
fset references are first converted to linear address equivalents. For
example, a Huge value of 1 would refer to the first megabyte of extended
memory beginning at address 100000 hex, or 1048576 decimal. The
segment:offset portions of such an address would fall roughly within the
first megabyte of extended memory.

The address movement keys described in the conventional mode above
work in an equivalent way in linear mode. The left and right arrow keys
move a line equivalent, and the up and down arrows move a screen
equivalent. PgUp and PgDn move by a 64K block, and the greater- and
less-than keys move by one megabyte.

As with Huge mode, to use the Linear mode your PC must support
extended memory moves using the BIOS interrupt 15h, function 87h.
If your PC has extended memory installed but hangs up or otherwise
acts erratically when the QB Plus memory viewer is invoked, or when a
huge value greater than zero is requested, you may need to disable QB
Pius's direct access to extended memory. Specify the "/NX" option to
QB Plus at start up, and Linear mode will be disabled. In this case,
conventional mode with a Huge value limit of zero will be used instead.
You will need an XMS driver, or a EMS driver emulator to view
extended memory in this event.

Expanded Memory Addressing
If your PC has expanded memory (EMS) and an EMS driver conforming
to the Lotus-Intel-Microsoft (LIM) EMS specification 4.0 or later, QB
Plus will provide for viewing EMS memory contents.

Pressing "E" toggles between EMS and Conventional or Linear modes.

With EMS, the Huge/Segment:Offset addressing takes on slightly dif
ferent characteristics than in Conventional/Linear modes. EMS
memory is not accessed directly; rather, it is viewed through a page
frame located in conventional memory. When an application requests

CRESCENT SOFIW ARE, INC. ■ 6-15

Chapter 6: Memo.ry Viewer QB Plus

access to expanded memory through the EMS driver, the driver makes
portions of that memory available through the conventional memory
page frame.

There are a number of variables associated with this method. EMS
memory is first allocated to a requesting program in 16K multiples,
called pages, which are associated with a unique handle number
provided back to the requesting program. The number of pages per
handle varies depending on the number requested and available. Hand
le numbers may range from O to FFFFh. Even the page size can be
altered from the 16k default, but, fortunately it rarely is. The EMS
driver can be asked to report on all of these variables, and QB Plus uses
this information to keep EMS addresses within meaningful ranges.

When displaying EMS memory, QB Plus uses the Huge value to repre
sent the handle. Only EMS handles that have been allocated contain
valid data. Thus, when an unallocated handle is requested for viewing,
QB Plus displays a blank memory value area.

QB Plus uses the segment column value to represent pages allocated to
a given EMS handle. Use the "S" command to specify a desired page
number, or the PgUp/Dn keys to move one at a time. Non-existent page
values may be specified with the "S" command, but they will return blank
data; scrolling past the number of pages allocated to a handle wraps the
page counter back to 0.

The offset value represents the byte address within the EMS page, with
a limit of 16k (3FFFh).

EMS handles may be named in addition to being numbered. Naming is
up to the application. If there is a name associated with the handle, QB
Plus displays it following the EMS indicator on the bottom line below
the memory value lines.

XMS Memory Addressing
If a driver that supports Extended Memory Specification (XMS) version
2.0 or later, such as HIMEM.SYS, is loaded, pressing the X key will
toggle between XMS and conventional linear mode. (The latest version
of HIMEM.SYS, along with the XMS specification, can be obtained
directly from Microsoft.)

■ 6-16 CRESCENT SOFIWARE, INC.

QB Plus Chapter 6: Memo,y Viewer

Like EMS, XMS uses a block allocation scheme built around handles
to let multiple programs share memory in a cooperative manner. Since
XMS runs only on PC's with 80286 or later processors, a larger number
of memory locations may be addressed than with EMS, which must be
compatible with 8088 CPU's. Accordingly, the XMS block size for a
given handle is variable between lK and 16 megabytes. Offsets within
the block are 24-bit linear values.

QB Plus uses the Huge address component to represent the handle
number, while the segment and offset components are used to form a
24-bit linear address. Thus the movement keys, and the H, S, and 0
commands adjust viewing addresses in a manner similar to linear mode.
Invalid handles and unallocated addresses within valid handles produce
blanks where the memory values would otherwise appear.

XMS also manages the first 64K of extended memory, which is uniquely
addressable by the CPU in both protected and real mode. A program
that uses this address space, known as the High Memory Area or HMA,
can access this area with its code, data, or both, almost as if it were
conventional memory. Within certain limitations, the XMS driver will
allocate this space in its entirety to the first program that asks. No
handle is provided since the HMA area is always at the same address;
other programs are informed when requesting the HMA that it is
already in use.

Whether the contents of HMA may be examined by QB Plus depends
upon the XMS driver and the class of PC. QB Plus uses the XMS Move
function to copy a block of extended memory from a handle/offset
location to a conventional memory display area. As the HMA is not
accessed by handle, nor by the XMS copy block function, the HMA
addresses are not accessible with QB Pius's XMS mode. Instead, this
area must be viewed in either conventional or linear mode.

However, if your PC does not support the BIOS interrupt 15h, function
87h extended memory moves, this area cannot be accessed directly.
Even so, XMS drivers running on 80386 and 80486 are capable of
mapping memory in and out of the HMA area. Thus, it is possible that
an application can write to the HMA, then release HMA, and HMA
will appear non-existent to QB Plus.

CRESCENT SOFIW ARE, INC. ■ 6-17

Chapter 6: Memory Viewer QB Plus

Interestingly, 80386 extended memory managers that use extended
memory to emulate EMS may allocate an EMS handle to the HMA li
so, and you can identify which EMS handle that is, you can view the
contents of the HMA in the EMS mode.

Because of these complications and the additional resident memory
working around them would require, QB Plus version 1.0 does not
support XMS-supported viewing of the HMA

■ 6-18 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 7: The Program Switcher and Add-On Accessories

The Program Switcher and Add-On
Accessories

The QB Plus Switcher lets you run another program from within
QuickBASIC, yet allows the other program almost all of the normal
conventional address space as though QuickBASIC were not loaded.
This makes it possible to quickly switch between QuickBASIC and other
large applications and environments, without unloading and reloading
QB/QBX, your source files, and Quick Libraries.

You can use this feature to invoke external add-on accessories to QB
Plus that you write yourself in QuickBASIC and compile to an .EXE
file. The Switch Program menu lets you choose from among executable
files in the current directory by using a QB-style Pick list. Once selected,
a couple of keystrokes from the main QB Plus menu invokes the
external program.

Invoke the switcher by pressing S from the main QB Plus menu.

On the next screen, the Tab and Shift+Tab keys permit movement
between input boxes similar to QuickBASIC. These input boxes accept
the name-including drive and subdirectory-and any command line
arguments for the new program that is to replace QuickBASIC. If only
the filename is given, QB Plus will assume an .EXE extension and search
in the current directory, or along the directory list specified in the
"PA1H=" environment variable. If no such file is found, a message to
that effect is displayed. If the desired file is a .COM file, then that
extension must be given explicitly as part of the filename entered.

As an alternative to entering the file name, you can use Tab or Shift+ Tab
to move to the top box, where a listing of up to the first 100 .EXE files
in the current directory is displayed. This is similar to the familiar file
picker box in QuickBASIC. Use the arrow keys, Home, End, or the first
letter of the name to move the cursor to the file name of choice, and
press Enter. That file name will then be placed into the file name box
below.

Once you are satisfied with the file name and command line arguments,
move to the OK button at the bottom of the window and press Enter.
Pressing Esc at any point before this cancels everything.

CRESCEITT SOFIW ARE, INC. ■ 7-1

Chapter 7: The Program Switcher and Add-On Accessories QB Plus

QB Plus will search for the specified file and report in the upper box
whether or not it was found. If not found, QB Plus pauses briefly before
returning. Otherwise, it swaps QuickBASIC out of memory, preserves
certain machine settings, and runs the specified program. When
finished, QB Plus recovers QuickBASIC, restores the prior machine
settings, and returns to the QB Plus main menu. Any errors are
reported in the upper box_

Although the swapping process happens quickly, there is a lot that goes
on by way of preparation and recovery from the swap. If certain
hardware or software errors occur in the process, it may be impossible
to return QuickBASIC to operation, and QB Plus will have to terminate
itself as well. You should therefore save any changed source files before
switching, invoking the debugger, or building an .EXE.

When swapping, QB Plus by default first looks for available extended
memory managed by an XMS driver such as HIMEM.SYS. If found,
QB Plus allocates an XMS handle of appropriate size and copies QB's
conventional memory image, and any loaded files and Quick Library to
XMS. If XMS memory is unavailable, QB Plus looks for EMS and if
found, attempts to copy to available EMS memory. Otherwise, QB Plus
opens a file named QBSWAP.$$$ in the current drive and subdirectory,
and swap QB into there if there is sufficient disk space. A command
line switch can be used to override swapping to XMS and/or EMS, and
instead force swapping to disk only.

You can also change and save the name of the swap file, and the forced
disk swap setting in the QB Plus Change Settings menu.

When QuickBASIC is swapped back at the conclusion of the alternate
program, the XMS/EMS memory or disk space is released.

Before QuickBASIC is swapped out, QB Plus preserves the current
drive and directory, the current video mode, cursor position and size,
current screen contents, and interrupt vectors. These are restored on
return. Other settings are not preserved, including EMS page mapping,
video palette and adapter registers, mouse cursor, and so forth. Chan
ges made to settings that are not preserved and which are not restored
by the alternate program when it ends could cause erratic behavior by
QuickBASIC Plus or QB. Tests with commonly used commercial
software applications have produced no problems in this regard, how
ever.

■ 7-2 CRESCENT SOFIW ARE, INC.

QB Plus Chapter 7: The Program Switcher and Add-On Accessories

The Program Switching feature works only with programs that release
all of their allocated memory on exit. Terminate and stay resident
programs cannot successfully be run with this switcher, and QB Plus will
fail when it cannot recover QuickBASIC's memory from the resident
program.

Preserving QB Plus/QB Screen Image

If you wish, you can write an external program that appears to be a QB
Plus accessory. By specifying the /NOCLS command line argument, or
by enabling the corresponding setting in the Settings-Other menu, QB
Plus will leave its pop up window with the underlying image of QB on
screen whenever the Switch Program (S) feature is invoked. By confin
ing the screen output of your external program to the QB Plus pop up
screen and displaying text using the same background color as QB Pius's
pop up window, your external program will appear to be a QB Plus
accessory. When your external accessory ends and returns control to
QB Plus, the original screen is restored. Therefore, your program does
not need to preserve it.

Please note that this option to preserve the QB Plus/QB screen image,
once selected, will apply to all occasions when the Switch program
feature is invoked, regardless of whether the external program called
respects the QB Plus window. You will therefore want to disable this
feature before switching to such other programs.

CRESCENT SOFIW ARE, INC. ■ 7-3

QB Plus Chapter 8: Change Settings

Change Settings
The Change Settings of QB Plus lets you customize QB Plus for your
current session.

Using the Save Settings option, future sessions may be customized as
well, since the stored settings are automatically read from file and
incorporated into QB Pius's operation each time QB Plus starts. How
ever, command line options used to start QB Plus take precedence over
any default or stored settings. The settings are stored in a file named
QBP.CFG located in current directory, or the directory in which QB
Plus resides.

Change Settings is accessed from the main QB Plus menu with the C
command. From there, select whatever you wish to change-settings
for the debugger, macro key player, or others.

Debugger Settings

On the Debugger Settings screen, specify the name of your external
debugger in the top box. QB Plus will automatically add an .EXE
extension if you do not specify otherwise. You may specify a full path
including drive and directory. If you do not give a drive or path, QB
Plus assumes the current directory and/or drive. You can edit the
default name, CV.EXE. Press Enter when you are finished, or use Tab
or Shift+ Tab to move to another box.

The next box below is for the command line options you wish to specify
to the debugger. Both the debugger name and the options are saved to
the configuration file when the Save Settings command is issued, so you
do not have to enter these each time QB Plus is loaded.

The lowest box is for the name of the executable program to be
debugged. This name is passed by QB Plus to the debugger, along with
the command line arguments when you invoke the Debugger command
from QB Pius's main menu. The .EXE extension is added to any file
name entered without an extension. No path or directory is added by
QB Plus if you do not include it as part of the file name.

Unlike the debugger name, the name of the program being debugged
is not saved in the QBP.CFG settings file on the premise that it will
change from one QB Plus session to another.

CRESCENT SOFIW ARE, INC. ■ 8-1

Chapter 8: Change Settings QB Plus

Once the data is entered to your satisfaction, move to the < OK> button
and press Enter. QB Plus will check to see if the debugger name you
specified belongs to a file that actually exists, and will print a brief
warning in the top box if the debugger cannot be found.

Once this information has been supplied, you can invoke the debugger
with a single keystroke from the main QB Plus menu.

If you have no external debugger, or wish not to use it in this way, you
can still make use of this QB Plus accessory. Simply substitute another
program name for the debugger name, and this substitute program will
be called by QB Plus when you invoke the Debugger command. You
can provide substitute command options as well.

Macro Key Customization

The "C" options on the QB Plus Macro Key Settings window provide
alternative command key combinations. For the key combination that
pops up the QB Plus menu window, press M to toggle between Con
trol +Shift and Left-Shift+ Right-Shift. The same alternatives are avail
able for the End Recording command key combination, which are
toggled using the E key. Control +Shift is good for single-handed opera
tion, but conflicts with certain QuickBASIC text selection commands.
Set these two commands differently if you do not want the QB Plus
menu window to pop up when you halt recording.

Playback key options (toggled with P) are Caps Lock, Num Lock, and
Scroll Lock. This key command is invoked with a double-tap.

The fourth option on the Change Setting screen controls the delay
between playback keystrokes. Each time you press the D key, the delay
interval between keystrokes is increased by 1/18th second. After a full
second is reached, the interval wraps back to zero. Use a delay increase
to slow keystroke playback for trouble shooting, or better timing with
QB's execution of recorded commands.

These settings are preserved along with the other QB Plus Settings
when you select the Save settings option from the main Change Settings
menu.

■ 8-2 CRESCENTSOFIWARE,INC

QB Plus Chapter 8: Change Settings

Other Settings

Various other operating settings may be changed from this window. Use
the Tab and Shift+ Tab keys to move from box to box.

Pressing Esc at any point, or Enter on the < OK> button will leave the
screen and whatever changes you have made intact. If you make these
changes on a temporary basis, be sure to restore them before invoking
the Save Settings command, because all of these settings are saved to
the QBP.CFG and used by QB Plus from then on. ·

File Swap Name
When XMS or EMS is not available, or is not to be used by QB Plus,
the memory image of QB is stored on disk during the Switch Program,
Debugger, and Build .EXE external processes. This is the file name QB
Plus uses for such disk storage.

This screen Jets you change it in the unlikely event of a conflict with
another program. This might occur, for example, if you are running on
a network, have the current directory set to a public area, and swap your
image into that directory at the same time another network user running
QB Plus does the same thing using the same swap name you are.

Note that if you are sharing QB Plus on a network, you will also be
sharing the QBP.CFG file if it is in a common public directory from
which others run QB Plus. To avoid conflicts here, each user should
keep QB Plus in a private directory, either on the seryer, or locally.
Since QB Plus first looks for QBP.CFG in the directory in which
QBP.EXE resides, your local copy will be used by QB Plus rather than
a shared network version. Also, please understand that QB Plus is
licensed for one user at a time; additional copies must be purchased if
you plan to have more than one programmer using it this way.

There are no provisions for specifying drive and subdirectory, because
QB Plus swaps QuickBASIC to the current directory only.

On/Off Toggle Switch Box
With the cursor on the top line within this box, pressing one of the Jetter
keys within the < > brackets will toggle the setting for that item
between off and on.

CRESCEITT SOFIW ARE, INC. ■ 8-3

Chapter 8: Change Settings QB Plus

Several of these keys may also be specified as a command line argument,
in which case the command line argument will override any setting saved
in the .CFG from a prior session.

Toggle Switches are as follows:

Real Time

Disk Only

No Clear Screen

Port Viewing

No Direct Extended

No EMS Overlays

■ 8-4

Continual redisplay of memory contents in the
memory viewer when On.

When On, QB Plus swaps the QuickBASIC
memory image to disk rather than extended or
expanded memory, when an external program
is run in Switch Program, Debugger, or Build
.EXE.

When On, QB Plus leaves its window on screen
when an external program is called. Leave this
off unless you write a QB Plus add-on that prints
only within the QB Plus pop up window.

When On, the memory viewer will read and
display register data from your PC's I/O ports.
Leave this off until you can determine that such
reading will not be harmful to your PC.

When On, prevents QB Plus from entering
protected mode to read extended memory
directly. This is in case your PC's hardware,
BIOS, or software conflict with QB Plus method
for doing this and you experience problems in
the QB Plus memory viewer.

When On, forces QB Plus to keep its overlays
on disk, and not load them into EMS. This frees
80K of EMS, but slows QB Pius's operation
somewhat.

CRESCENf SOFIW ARE, INC.

QB Plus

Real Time Clock

Snow suppression

CRESCENT SOFIW ARE, INC.

Chapter 8: Change Settings

When On, QB Plus intercepts interrupt 70h,
and uses the periodic interrupt feature of a
built-in real-time clock to generate profile sam
pling rates from 32 to 2048 per second. If you
set this On and your PC does not have a real
time CMOS clock, the time samples will not be
collected at rates above 18 per second.

If the use of the CMOS clock interferes with
other software, set this to Off and the clock will
not be used. If you save this setting to file, QB
Plus will also not intercept interrupt 70h the
next time it starts.

When On, eliminates static encountered on
some CGA screens. Leave this Off if you have
a CGA screen that does not have this problem.

■ 8-5

QB Plus a.apter 9: Ending the Accessories

Ending the Accessories
Because QB Plus runs QuickBASIC as a child process, QB Plus is
resident in memory only as long as QuickBASIC is. When you exit
QuickBASIC, QB Pll:IS terminates as well releasing its memory back to
DOS. In this manner, QB Plus differs from a Terminate and Stay
Resident (TSR) utility that is always resident until deinstalled manually.

If you have made changes in settings that you would like to use in the
next QB Plus session, be sure to save the current settings before exiting
QuickBASIC. The values are stored in the file QBP.CFG in the same
directory as QBP.EXE, and loaded by QB Plus at start up.

Before terminating completely, QB Plus checks to see if you have
recorded keystrokes that have not been saved, and gives you a last
chance to do so.

CRESCENT SOFIWARE, INC. ■ 9-1

QB Plus Appendices

Appendices

QB Plus Error Condition Codes

It is possible that DOS access by QB Plus may produce error codes.

The following is a comprehensive listing based on DOS Interrupt 21,
function 59 (Get Extended Error Information) provided under DOS
3.0 and later. The most likely codes you can expect are 2 and 8 at start
up, and codes related to disk conditions when files are written.

DOS
ERRORCODE .MEANING
1 Invalid function
2 File not found
3 Path not found
4 No handles available
5 Access denied
6 Invalid handle
7 Memory control blocks destroyed
8 Insufficient memory
9 Invalid memory block address
10 Invalid environment
11 Invalid format
12 Invalid access code
13 Invalid data
14 Reserved
15 Invalid drive
16 Attempt to remove current directory
17 Not the same device
18 No more files
19 Disk write protected
20 Unknown unit
21 Drive not ready
22 Unknown command
23 CRC error
24 Bad request structure length
25 Seek error
26 Unknown media type
27 Sector not found
28 Out of paper
29 Write fault
30 Read fault
31 General failure
32 Sharing violation
33 Lock violation
34 Invalid disk change

CRESCENT SOFIW ARE, INC. ■ A-1

Appendices QB Plus

DOS
ERRORCODE MEANING
35 FCB unavailable
36 Sharing buffer overflow
37 Reserved
38 Unable to complete file operation
39-49 Reserved
50 Network request not supported
51 Remote computer not listening
52 Duplicate name on network
53 Network name not found
54 Network busy
55 Network device no longer exists
56 Net BIOS command limit exceeded
57 Network adapter error
58 Incorrect network response
59 Unexpected network error
60 Incompatible remote adapter
61 Print queue full
62 Not enough space for print file
63 Print file deleted
64 Network name deleted
65 Access denied
66 Network device type incorrect
67 Network name not found
68 Network name limit exceeded
69 Net BIOS session limit exceeded
70 Tumporarily paused
71 Network request not accepted
72 Print or disk redirection is paused
73-79 Reserved
80 File already exists
81 Reserved
82 Cannot make directory entry
83 Fail on Int24
84 Too many redirections
85 Duplicate redirection
86 Invalid pas.sword
87 Invalid parameter
88 Network data default
89 Function not supported by network
90 Required system component not installed

Macro Key Technical Information

1. File structure

The Macro file consists of 36 fixed length records. The length of each
record is 83 bytes. Each record begins with a length byte representing
the number of valid bytes which follow within the record. 82 is the
maximum (two macro bytes plus 80 keystroke bytes). At byte two is the

■ A-2 CRESCENT SOFIW ARE, INC.

QB Plus Appendices

first macro byte-the ASCII code of the macro key character (A-Z, 0-9).
The third byte is the ASCII code of the macro key to which this macro
is linked. A code of 127 means there is no link in effect. Up to 40 key
codes follow the link byte. They each consist of two bytes: the first is
the ASCII code of the character, or a O reflecting an extended key code
similar to the first character returned by INKEY$ when such a key is
pressed. The second byte is the key scan code.

The following QuickBASIC declaration can be used to access the macro
file:

CONST MaxMacros = 36
TYPE MacroFi leT

Length AS STRING * 1
MacroKey AS STRING * 1
LinkMacro AS STRING* 1
Keycodes AS STRING * 80

END TYPE
DIM Macro(l TO MaxMacros) AS MacroFileT

Val idMacros$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"

2. Special codes

The shift, control and alternate keys are identified in a recorded macro
with a leading O byte, and a second byte as follows:

Messages

DECIMAL
255
254
253
252
251
250
249
248

HEX
FF
FE
FD
FC
FB
FA
F9
F8

KEYACTION
Alt Down
Alt Up
CtrlDown
CtrlUp
Left-Shift down
Left-Shift up
Right-Shift down
Right-Shift up

QB Plus Exit Code [NN], Dos e"orcode [DD].

This message may be accompanied by the message "Program not found"
if an error occurred when QB Plus attempted to load QuickBASIC. You
may need to change the drive or directory for either QB Plus or

CRESCENT SOFIW ARE, INC. ■ A-3

Appendices QB Plus

QuickBASIC, or add QuickBASIC's location to the DOS path, or
explicitly specify the QuickBASIC path with the /Q: command at QB
Plus startup.

If you receive a message "Insufficient Memory", it means there was
inadequate conventional memory to start QuickBASIC .. You may need
to unload other TSR's or drivers that occupy conventional memory.

If only the above message is returned by QB Plus on exit, then a problem
condition internal to QB Plus may have occurred. Please note the code
number and anything you can of the circumstances occurring during QB
Pius's operation, and report the information to Crescent Software.

Cannot continue - Error [00].

QB Plus has encountered a fatal error attempting to read its overlays
from file. The reason is listed thereafter as follows:.

Overlay File Not Found.

The QB Plus overlays (.OVR) must be in the same directory as the main
QB Plus file, unless the overlays have been combined into a common
.EXE file with the main resident code.

//0 error reading overlay file.

The overlay or main .EXE file has become damaged, or the disk itself
has become unreadable.

Insufficient heap for overlay.

This reflects a fatal error internal to QB Plus, indicating that the file
image of QB Plus may have become damaged. Reload your original
copy of QB Plus.

Cannot continue. //0 error reading overlay file.

QB Plus encountered a fatal error attempting to load its overlays into
expanded memory. The QB Plus file may be damaged and should be
reloaded from the original disks.

■ A-4 CRESCENT SOFIW ARE, INC.

QB Plus Appendices

Keystrokes recorded in memory may have changed. Save changes (YIN)?

When QB Plus ends, it provides this prompt as a last chance to preserve
recorded, but unsaved keystrokes. Press N to discard them, or Y to be
prompted for a filename for saving the keystrokes.

Error detected in configuration file-not loaded.

QB Plus was unable to read its configuration file, QBP.CFG, at startup.
Create a new configuration file after QB Plus starts by accessing the
Change Settings option, specifying the desired options, then Saving the
changes.

Cannot locate QuickBASIC. Program ended.

QB Plus could not locate QB.EXE or QBX.EXE in either the current
directory, the DOS path, the directory from which QB Plus is being run,
or in a directory specified with the /Q: command line argument. If you
are using the /Q: command line switch be sure to include a trailing
backslash in the subdirectory name. For example: C:\QB45\.

QB vectors reattached.

Denotes success at reconnecting the swapped-out image of QB/QBC
after Switch program.

[XMSJ [EMS J [DISK] swap failed, code [SSJ. Operation canceled.

QB Plus encountered a device driver error at the start of the Switch
program function when attempting to place a copy of the QuickBASIC
image in the specified location. The code (SS] corresponds to error
codes returned by the XMS, EMS or Dos disk driver as the case may
be.

QB memory shrink failed, code [DD]. Operation canceled.

QB Plus was unable to recover QuickBASIC's memory image area from
DOS in preparation for Switching to another program. DOS or its
memory control blocks may be damaged. Save your files, reboot, and
then reload QB Plus.

CRESCENT SOFIW ARE, INC. ■ A-5

Appendices QB Plus

DOS exit code [DD]. Press any key to continue.

After a child process called by QB Plus is completed, QB Plus displays
any exit code that the child process passed to Dos. An exit code of zero
usually means a program ended successfully. Any other code may
indicate a problem, or perhaps it represents information being returned
to the calling program. Consult the child program's documentation for
possible meanings of its exit code.

E,ror code [DD] restoring subdirectory [D.path].

QB Plus is unable to reset the current directory to the same drive and
directory that was the current directory at the time Switch program
function was invoked. There may be a problem with the disk drive, or
the disk may have been removed.

[XMSJ [EMS} [DISK] swap failed [SSJ. QB is unrecoverable.

Following the Switch Program process, QB Plus was unable to retrieve
QuickBASIC's stored memory image. This message will also indicate
the source driver where the problem was encountered as XMS, EMS,
or disk, and the error code [SS] corresponding to the particular driver
error.

[ProgramName J not found. Operation canceled.

During the Switch program process, the specified program could not be
found in either the current directory, or along the DOS path. An .EXE
extension is assumed and added to any filename you enter without an
EXE extension .. COM files must have the .COM extension explicitly
included in the entry you provide. Batch (.BA1) files cannot be run
from the Switch Program menu in QB Plus.

[Debugger FileName] not found. Operation canceled.

QB Plus could not find your debugger in either the current directory or
a directory in the Dos path list. If the .COM or .EXE extension is not
specified, QB Plus adds an .EXE extension to the file name you enter.
A complete drive and path may be entered along with the debugger
name.

■ A-6 CRESCENf SOFIWARE, INC

QB Plus Appendices

E,ror [DD] attempting to save data.

QB Plus has encountered an I/O error when saving Compile/Link
options to disk.

Code [DD]. Cannot read file.

QB Plus encountered an I/O error attempting to read a macro key file.

Code [DD]. Cannot write file.

QB Plus encountered an I/O error attempting to write a macro key file.

Printer e,ror. Retry(YIN)?

An error has been returned by DOS when printing to the printer.
Correct the problem (out of paper, printer off, printer off line), then
respond with Y to resume printing.

Sample Buffer Overfiow.

During profiling, the profiler's resident memory buffer capacity of 281
routines was exceeded and the excess routines have not been sampled.
This is just a warning error.

QBPBUILD.EXE not found.

During the Build .EXE process, QB Plus was unable to locate the
external companion program QBPBUILD.EXE in either the current
directory, the DOS path, or the directory from which QB Plus was run.

Run time e,ror [RRRJ at [SSSS:OOOO].

An internal error fatal to QB Plus has occurred at the segment and
address indicated.

Problem Conditions

QB Plus hangs on startup

If the problem occurs before QB Plus displays its startup message, you
may have a different version of QB Plus in the current directory than
the version you actually started in a different directory. Remove one
version or run QB Plus from the current directory.

CRESCEITT SOFIW ARE, INC. ■ A-7

Appendices QB Plus

If the problem occurs after the startup message, there may be a problem
with either an EMS or XMS driver. Try running QB Plus without either
or both.

QB Plus does not respond to its pop up keys

QB.EXE or QBX.EXE may not be in the editing mode waiting for a
keystroke entry. QB Plus will not pop up while a program is running,
or while a QB/QBX menu is active. This includes the top line menu bar
which is easily activated by merely pressing Alt.

Other possibilities are that QB Plus did not recognize the version of
QuickBASIC that it loaded, the computer's BIOS is not 100% IBM
compatible, or input has been redirected by another resident program
or the operating system. It is also possible that the keyboard is stuck in
a shifted state (as if the Alt, Shift or Ctr! were being invisibly held down).
Try tapping all Alt, Shift, and Ctr!· keys, try the Ctr!+ Break key com
bination, remove any TSR's, try a different version of DOS, or ensure
that QB Plus supports your version of QuickBASIC.

QB Plus crashes, hangs, or reboots when the Memory Viewer option is
invoked

There is a protected mode memory access conflict between QB Plus and
your PC's BIOS, a loaded memory manager, or operating system. Try
starting QB Plus with the /NX option.

QB Plus reports "Cannot find [filename].EXE" for a .COM file

In Switch Program, an EXE extension is added to any program name
entered without an extension. For .COM files, you must specify the full
file name including the .COM extension.

Profiling does not work

If samples are not collected during profiling, first be sure profiling was
enabled-that is, you set profiling to Enabled, and then you exited the
profile menu using the Enter and not the Esc key.

If you were using a sampling rate greater than 18, your PC must have
an AT-compatible real time clock that QB Plus can set to generate a
periodic interrupt. Otherwise, the QB Plus sample collection routine
will not be invoked. Some operating systems, such as OS/2, Windows,

■ A-8 CRESCENT SOFIW ARE, INC.

QB Plus Appendices

and DesqView may prevent this periodic interrupt from reaching QB
Plus, and you will be able to sample only at 18 samples per second rate
under those operating systems.

Profiling rate cannot be changed in the profiler menu

If the sampling rate is 18, and pressing the R key does not change it,
then QB Plus is set up to ignore any AT-compatible real time CMOS
clock in your PC. This occurred either because QB Plus could not
identify an appropriate clock; or a real-time clock was found but the
/NORTC switch was contained in the QB Plus configuration file or was
given as a QB Plus option.

Profiling results are inconsistent from one nm to the next

The profiler bases its analysis on sample data, not exact measurements.
Sampling rates and sample counts, along with the relative frequency that
a routine was sampled, all affect the precision of the results. Some
minor variation should not be an obstacle to optimizing your program,
as you will need to improve speed by large amounts to have noticeable
affect on the overall results.

To obtain the most precise measurements, use the highest sampling rate,
run the program long enough to get a representative sample collection,
and do several sampling runs combining the results of the runs by not
discarding samples between runs. Also be aware of possible harmonics
and stroboscopic effects; and be certain you have not inadvertently
enabled or disabled debugging features that change the program execu
tion rate between comparison runs. See the Profiling section of the
manual for details.

Main module duration increases the longer the profile sample is taken

The main module, while called only once at the start of the program,
may be returned to many times during execution of the program. Thus,
in a program where there are continued calls to subroutines from the
main module, the main module duration will gradually increase as the
program runs.

CRESCEl'IT SOFIWARE, INC. ■ A-9

Appendices QB Plus

QB Plus does not co"ectly report installed extended memory with the F3
key

QB Plus uses the Int 15 BIOS call, as well as an inspection of the CMOS
configuration area in AT-compatible PC's to report memory. In some
PC's with additional extended memory on a peripheral card (such as
certain PS/2 models), the data on the additional memory may be stored
at a location QB Plus does not access. You should still be able to view
the additional memory locations in the memory viewer.

QB Plus uses the wrong name for the loaded QuickBASIC program

Significant changes to a loaded program, such as changing its name,
changing main module designations, loading and unloading various
modules, and extensive editing can sometimes confuse QB Plus. In such
a case, save your program and its modules, then reload them fresh from
disk, beginning with the main module. This will usually correct the
situation. If not, end QB/QB Plus, restart it, and finally reload your
program.

QB Plus seems to remove certain QB!QBX command line parameters

If you use the /CMD switch for QuickBASIC when starting QB Plus,
command arguments which follow /CMD and normally belong to QB
Plus will be accepted by QB Plus as its own, and removed from the
command line before the line is passed on to QB/QBX. As a
workaround, try using the"-" switch character, or place a space between
the switch character and the argument, for arguments following /CMD.
Alternatively, set the /CMD switches in the QB/QBX Run-Command
menu.

■ A-10 CRESCENT SOFIW ARE, INC.

CRESCENT
SOFTWARE. INC

32 Seventy Acres ■ West Redding, Connecticut ■ 06896 ■ 203-438-5300

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094

